Topological horseshoe and uniform hyperbolicity of the symplectic coupled Hénon map

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Keisuke Fujioka , Ryota Kogawa , Jizhou Li , Akira Shudo
{"title":"Topological horseshoe and uniform hyperbolicity of the symplectic coupled Hénon map","authors":"Keisuke Fujioka ,&nbsp;Ryota Kogawa ,&nbsp;Jizhou Li ,&nbsp;Akira Shudo","doi":"10.1016/j.physd.2025.134722","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the topological horseshoe and the uniform hyperbolicity of a four-dimensional symplectic map, which is introduced by coupling two two-dimensional symplectic Hénon maps via linear terms. Based on the cone field argument following Devaney and Nitecki <span><span>[1]</span></span>, we first derive a sufficient condition for topological horseshoe and uniform hyperbolicity in the parameter space including the two different anti-integrable limits. We then explore uniformly hyperbolic parameter regions by applying the computer-assisted proof developed by Arai and find that there exist non-trivial uniformly hyperbolic regions in the parameter space that differ from those obtained using the cone condition. The existence of such non-trivial uniformly hyperbolic regions reminds us of the so-called hyperbolic plateaus in the two-dimensional Hénon map.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134722"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500199X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the topological horseshoe and the uniform hyperbolicity of a four-dimensional symplectic map, which is introduced by coupling two two-dimensional symplectic Hénon maps via linear terms. Based on the cone field argument following Devaney and Nitecki [1], we first derive a sufficient condition for topological horseshoe and uniform hyperbolicity in the parameter space including the two different anti-integrable limits. We then explore uniformly hyperbolic parameter regions by applying the computer-assisted proof developed by Arai and find that there exist non-trivial uniformly hyperbolic regions in the parameter space that differ from those obtained using the cone condition. The existence of such non-trivial uniformly hyperbolic regions reminds us of the so-called hyperbolic plateaus in the two-dimensional Hénon map.
辛耦合hsamnon映射的拓扑马蹄形和一致双曲性
本文分析了一个四维辛映射的拓扑马蹄形和一致双曲性,该映射是通过线性项耦合两个二维辛映射引入的。基于Devaney和Nitecki[1]的锥场论证,我们首先在参数空间中给出了拓扑马蹄形和一致双曲性的充分条件,包括两种不同的反积极限。然后利用Arai的计算机辅助证明方法探索一致双曲参数区域,发现参数空间中存在不同于用锥条件得到的非平凡一致双曲区域。这种非平凡的一致双曲区域的存在使我们想起二维hsamnon图中所谓的双曲高原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信