Long-time dynamics of a parabolic-ODE SIS epidemic model with saturated incidence mechanism

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Rui Peng , Rachidi Salako , Yixiang Wu
{"title":"Long-time dynamics of a parabolic-ODE SIS epidemic model with saturated incidence mechanism","authors":"Rui Peng ,&nbsp;Rachidi Salako ,&nbsp;Yixiang Wu","doi":"10.1016/j.physd.2025.134747","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate a parabolic-ODE SIS epidemic model with no-flux boundary conditions in a heterogeneous environment. The model incorporates a saturated infection mechanism <span><math><mrow><mi>S</mi><mi>I</mi><mo>/</mo><mrow><mo>(</mo><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>S</mi><mo>+</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>m</mi><mo>≥</mo><mo>,</mo><mspace></mspace><mo>⁄</mo><mo>≡</mo><mn>0</mn></mrow></math></span>. This study is motivated by disease control strategies, such as quarantine and lockdown, that limit population movement. We examine two scenarios: one where the movement of the susceptible population is restricted, and the other where the movement of the infected population is neglected. We establish the long-term dynamics of the solutions in each scenario. Compared to previous studies that assume the absence of a saturated incidence function (i.e., <span><math><mrow><mi>m</mi><mo>≡</mo><mn>0</mn></mrow></math></span>), our findings highlight the novel and significant interplay between total population size, transmission risk level, and the saturated incidence function in influencing disease persistence, extinction, and spatial distribution. Numerical simulations are performed to validate the theoretical results, and the implications of the results are discussed in the context of disease control and eradication strategies.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134747"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate a parabolic-ODE SIS epidemic model with no-flux boundary conditions in a heterogeneous environment. The model incorporates a saturated infection mechanism SI/(m(x)+S+I) with m,0. This study is motivated by disease control strategies, such as quarantine and lockdown, that limit population movement. We examine two scenarios: one where the movement of the susceptible population is restricted, and the other where the movement of the infected population is neglected. We establish the long-term dynamics of the solutions in each scenario. Compared to previous studies that assume the absence of a saturated incidence function (i.e., m0), our findings highlight the novel and significant interplay between total population size, transmission risk level, and the saturated incidence function in influencing disease persistence, extinction, and spatial distribution. Numerical simulations are performed to validate the theoretical results, and the implications of the results are discussed in the context of disease control and eradication strategies.
具有饱和发病机制的抛物- ode SIS流行病模型的长时间动力学
本文研究了异质环境下具有无通量边界条件的抛物- ode SIS流行病模型。该模型包含一个饱和感染机制SI/(m(x)+S+I),其中m≥,⁄≡0。这项研究的动机是疾病控制策略,如隔离和封锁,限制人口流动。我们研究了两种情况:一种是易感人群的流动受到限制,另一种是感染人群的流动被忽视。我们在每个场景中建立解决方案的长期动态。与先前假设不存在饱和发生率函数(即m≡0)的研究相比,我们的研究结果强调了总体人口规模、传播风险水平和饱和发生率函数在影响疾病持久性、灭绝和空间分布方面的新颖而重要的相互作用。数值模拟进行了验证理论结果,并在疾病控制和根除策略的背景下讨论了结果的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信