Jie Wu , Xiaoyi Zhang , Xisheng Zhan , Tao Han , Huaicheng Yan
{"title":"Adaptive time-varying output formation tracking control for multi-agent system with dynamic event-triggered strategies","authors":"Jie Wu , Xiaoyi Zhang , Xisheng Zhan , Tao Han , Huaicheng Yan","doi":"10.1016/j.jocs.2025.102630","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the output feedback time-varying formation(OFTVF) tracking issue for general linear multi-agent systems(MASs). To address this issue, novel dynamic event-triggered(DET) strategies are proposed to manage the inter-agent communication effectively. It removes the assumption that constant interaction is required between agents, and therefore communication cost is reduced significantly. Then under the proposed DET strategies, an adaptive OFTVF tracking control algorithms is designed for general linear MASs. Using Lyapunov stability theory, it is demonstrated that under proper conditions the proposed protocol is implementable. Furthermore, for the constructed DET scheme, no agent exhibit the Zeno behavior. Simulation example is presented at the end of the paper to demonstrate the effectiveness of designed DET control mechanism.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"90 ","pages":"Article 102630"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001073","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the output feedback time-varying formation(OFTVF) tracking issue for general linear multi-agent systems(MASs). To address this issue, novel dynamic event-triggered(DET) strategies are proposed to manage the inter-agent communication effectively. It removes the assumption that constant interaction is required between agents, and therefore communication cost is reduced significantly. Then under the proposed DET strategies, an adaptive OFTVF tracking control algorithms is designed for general linear MASs. Using Lyapunov stability theory, it is demonstrated that under proper conditions the proposed protocol is implementable. Furthermore, for the constructed DET scheme, no agent exhibit the Zeno behavior. Simulation example is presented at the end of the paper to demonstrate the effectiveness of designed DET control mechanism.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).