Internal solitary and cnoidal waves of moderate amplitude in a two-layer fluid: the extended KdV equation approximation

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Nerijus Sidorovas , Dmitri Tseluiko , Wooyoung Choi , Karima Khusnutdinova
{"title":"Internal solitary and cnoidal waves of moderate amplitude in a two-layer fluid: the extended KdV equation approximation","authors":"Nerijus Sidorovas ,&nbsp;Dmitri Tseluiko ,&nbsp;Wooyoung Choi ,&nbsp;Karima Khusnutdinova","doi":"10.1016/j.physd.2025.134723","DOIUrl":null,"url":null,"abstract":"<div><div>We consider travelling internal waves in a two-layer fluid with linear shear currents from the viewpoint of the extended Korteweg–de Vries (eKdV) equation derived from a strongly-nonlinear long-wave model. Using an asymptotic Kodama-Fokas-Liu near-identity transformation, we map the eKdV equation to the Gardner equation. This improved Gardner equation has a different cubic nonlinearity coefficient and an additional transport term compared to the frequently used truncated Gardner equation. We then construct approximate solitary and cnoidal wave solutions of the eKdV equation using this mapping and test validity and performance of these approximations, as well as performance of the truncated and improved Gardner and eKdV equations, by comparison with direct numerical simulations of the strongly-nonlinear two-layer long-wave parent system in the absence of currents.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134723"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider travelling internal waves in a two-layer fluid with linear shear currents from the viewpoint of the extended Korteweg–de Vries (eKdV) equation derived from a strongly-nonlinear long-wave model. Using an asymptotic Kodama-Fokas-Liu near-identity transformation, we map the eKdV equation to the Gardner equation. This improved Gardner equation has a different cubic nonlinearity coefficient and an additional transport term compared to the frequently used truncated Gardner equation. We then construct approximate solitary and cnoidal wave solutions of the eKdV equation using this mapping and test validity and performance of these approximations, as well as performance of the truncated and improved Gardner and eKdV equations, by comparison with direct numerical simulations of the strongly-nonlinear two-layer long-wave parent system in the absence of currents.
两层流体中中等振幅的内孤立波和余弦波:扩展的KdV方程近似
从由强非线性长波模型导出的扩展Korteweg-de Vries (eKdV)方程的观点出发,考虑具有线性剪切流的两层流体中的行内波。利用渐近Kodama-Fokas-Liu近恒等变换,将eKdV方程映射为Gardner方程。与常用的截断Gardner方程相比,改进的Gardner方程具有不同的三次非线性系数和额外的输运项。然后,我们利用这种映射构造了eKdV方程的近似孤立波和余弦波解,并通过与没有电流的强非线性两层长波母系统的直接数值模拟比较,测试了这些近似的有效性和性能,以及截断和改进的Gardner和eKdV方程的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信