Shielding of breathers for the focusing nonlinear Schrödinger equation

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Gregorio Falqui , Tamara Grava , Christian Puntini
{"title":"Shielding of breathers for the focusing nonlinear Schrödinger equation","authors":"Gregorio Falqui ,&nbsp;Tamara Grava ,&nbsp;Christian Puntini","doi":"10.1016/j.physd.2025.134744","DOIUrl":null,"url":null,"abstract":"<div><div>We study a deterministic gas of breathers for the Focusing Nonlinear Schrödinger equation. The gas of breathers is obtained from a <span><math><mi>N</mi></math></span>-breather solution in the limit <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. The limit is performed at the level of scattering data by letting the <span><math><mi>N</mi></math></span>-breather spectrum to fill uniformly a suitable compact domain of the complex plane in the limit <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. The corresponding norming constants are interpolated by a smooth function and scaled as <span><math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math></span>. For particular choices of the domain and the interpolating function, the gas of breathers behaves as finite breathers solution. This extends the <em>shielding effect</em> discovered in Bertola et al. (2023) for a soliton gas also to a breather gas.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134744"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002210","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a deterministic gas of breathers for the Focusing Nonlinear Schrödinger equation. The gas of breathers is obtained from a N-breather solution in the limit N. The limit is performed at the level of scattering data by letting the N-breather spectrum to fill uniformly a suitable compact domain of the complex plane in the limit N. The corresponding norming constants are interpolated by a smooth function and scaled as 1/N. For particular choices of the domain and the interpolating function, the gas of breathers behaves as finite breathers solution. This extends the shielding effect discovered in Bertola et al. (2023) for a soliton gas also to a breather gas.
聚焦非线性Schrödinger方程的呼吸器屏蔽
研究了聚焦非线性Schrödinger方程的确定性呼吸气体。呼吸器气体由N呼吸器解在极限N→∞处得到。该限制是在散射数据水平上通过让N-呼吸谱在极限N→∞下均匀地填充复平面的合适紧致域来实现的。相应的赋范常数由光滑函数内插,并按1/N缩放。对于特定的定义域和插值函数的选择,呼吸者气体表现为有限呼吸者解。这将Bertola et al.(2023)对孤子气体发现的屏蔽效应扩展到呼吸气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信