Autocrime - open multimodal platform for combating organized crime

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Srikanth Madikeri , Petr Motlicek , Dairazalia Sanchez-Cortes , Pradeep Rangappa , Joshua Hughes , Jakub Tkaczuk , Alejandra Sanchez Lara , Driss Khalil , Johan Rohdin , Dawei Zhu , Aravind Krishnan , Dietrich Klakow , Zahra Ahmadi , Marek Kováč , Dominik Boboš , Costas Kalogiros , Andreas Alexopoulos , Denis Marraud
{"title":"Autocrime - open multimodal platform for combating organized crime","authors":"Srikanth Madikeri ,&nbsp;Petr Motlicek ,&nbsp;Dairazalia Sanchez-Cortes ,&nbsp;Pradeep Rangappa ,&nbsp;Joshua Hughes ,&nbsp;Jakub Tkaczuk ,&nbsp;Alejandra Sanchez Lara ,&nbsp;Driss Khalil ,&nbsp;Johan Rohdin ,&nbsp;Dawei Zhu ,&nbsp;Aravind Krishnan ,&nbsp;Dietrich Klakow ,&nbsp;Zahra Ahmadi ,&nbsp;Marek Kováč ,&nbsp;Dominik Boboš ,&nbsp;Costas Kalogiros ,&nbsp;Andreas Alexopoulos ,&nbsp;Denis Marraud","doi":"10.1016/j.fsidi.2025.301937","DOIUrl":null,"url":null,"abstract":"<div><div>A criminal investigation is a labor-intensive work requiring expert knowledge from several disciplines. Due to a large amount of heterogeneous data available from several modalities (i.e., audio/speech, text, video, non-content data), its processing raises many challenges. It may become impossible for law enforcement agents to deal with large amounts of highly-diverse data, especially for cross-border investigations focused on organized crime. ROXANNE EC H2020 project developed an all-in-one investigation platform for processing such diverse data. The platform mainly focuses on analyzing lawfully intercepted telephone conversations extended by non-content data (e.g., metadata related to the calls, time/spatial positions, and data collected from social media). Several state-of-the-art components are integrated into the pipeline, including speaker identification, automatic speech recognition, and named entity detection. With information extracted from this pipeline, the platform builds multiple knowledge graphs that capture phone and speaker criminal network interactions, including the central network and their clans. After hands-on sessions, law enforcement agents found the Autocrime platform easy to understand and highlighted its innovative, multi-technology functionalities that streamline forensic investigations, reducing manual effort. The AI-powered platform marks a significant first step toward creating an open investigative tool that combines advanced speech, text, and video processing algorithms with criminal network analysis, aimed at mitigating organized crime.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"54 ","pages":"Article 301937"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000769","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A criminal investigation is a labor-intensive work requiring expert knowledge from several disciplines. Due to a large amount of heterogeneous data available from several modalities (i.e., audio/speech, text, video, non-content data), its processing raises many challenges. It may become impossible for law enforcement agents to deal with large amounts of highly-diverse data, especially for cross-border investigations focused on organized crime. ROXANNE EC H2020 project developed an all-in-one investigation platform for processing such diverse data. The platform mainly focuses on analyzing lawfully intercepted telephone conversations extended by non-content data (e.g., metadata related to the calls, time/spatial positions, and data collected from social media). Several state-of-the-art components are integrated into the pipeline, including speaker identification, automatic speech recognition, and named entity detection. With information extracted from this pipeline, the platform builds multiple knowledge graphs that capture phone and speaker criminal network interactions, including the central network and their clans. After hands-on sessions, law enforcement agents found the Autocrime platform easy to understand and highlighted its innovative, multi-technology functionalities that streamline forensic investigations, reducing manual effort. The AI-powered platform marks a significant first step toward creating an open investigative tool that combines advanced speech, text, and video processing algorithms with criminal network analysis, aimed at mitigating organized crime.
自动犯罪-打击有组织犯罪的开放式多模式平台
刑事侦查是一项劳动密集型的工作,需要多个学科的专业知识。由于来自多种模式的大量异构数据(即音频/语音、文本、视频、非内容数据),其处理提出了许多挑战。执法人员可能无法处理大量高度多样化的数据,特别是针对有组织犯罪的跨境调查。ROXANNE EC H2020项目开发了一个一体化的调查平台来处理这些多样化的数据。该平台主要侧重于分析合法截获的非内容数据(如与通话相关的元数据、时间/空间位置、社交媒体收集的数据)扩展的电话对话。几个最先进的组件集成到管道中,包括说话人识别、自动语音识别和命名实体检测。通过从这个管道中提取的信息,该平台建立了多个知识图谱,捕捉电话和扬声器犯罪网络的相互作用,包括中央网络和他们的宗族。在实践环节后,执法人员发现Autocrime平台易于理解,并强调其创新的多技术功能,简化了法医调查,减少了人工工作。这个由人工智能驱动的平台标志着朝着创建一个开放的调查工具迈出了重要的第一步,该工具将先进的语音、文本和视频处理算法与犯罪网络分析相结合,旨在减轻有组织犯罪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信