{"title":"A Multi-Head Attention mechanism assisted MADDPG algorithm for real-time data collection in Internet of Drones","authors":"A.K.M. Atiqur Rahman , Muntasir Chowdhury Mridul , Palash Roy , Md. Abdur Razzaque , Md. Rajin Saleh , Mohammad Mehedi Hassan , Md Zia Uddin","doi":"10.1016/j.vehcom.2025.100944","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible movement and rapid deployment capabilities of unmanned aerial vehicles (UAVs) or drones have enabled them to be ideal for fresh and real-time data collection in the Internet of Drones (IoD) network. With the rising demand for IoD applications, optimizing the Age of Information (AoI), and energy efficiency of drones has become a challenging problem. The existing literature works are either limited by considering single-drone data collection from 2D space or by not prioritizing data from diverse IoT devices. In this paper, we have developed an optimization framework for multi-drone-assisted data collection in 3D space, which brings a trade-off between minimizing drone energy consumption and AoI, exploiting the Mixed Integer Linear Programming (MILP) problem. However, due to the NP-hardness of the developed optimization framework for large networks, we have devised a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, supported and enhanced by a Multi-Head Attention (MHA) mechanism for multi-drone-assisted data collection to minimize drone energy consumption and AoI jointly, namely MECAO. The MHA in the MECAO system helps prioritize IoT data sources and ensures the timely collection of important data. This system enables the agents to coordinate effectively among themselves and provides innovative solutions to complex network issues. Our findings demonstrate substantial advancements in real-time data collection and drone performance, offering a practical and efficient solution for modern IoD applications. The developed MECAO system is implemented in the OpenAI Gym simulator platform, and the simulation trace file content depicts the improvement in AoI by up to 56% while the energy consumption is reduced by as high as 38.5%, respectively, compared to the state-of-the-art works.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"54 ","pages":"Article 100944"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000713","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible movement and rapid deployment capabilities of unmanned aerial vehicles (UAVs) or drones have enabled them to be ideal for fresh and real-time data collection in the Internet of Drones (IoD) network. With the rising demand for IoD applications, optimizing the Age of Information (AoI), and energy efficiency of drones has become a challenging problem. The existing literature works are either limited by considering single-drone data collection from 2D space or by not prioritizing data from diverse IoT devices. In this paper, we have developed an optimization framework for multi-drone-assisted data collection in 3D space, which brings a trade-off between minimizing drone energy consumption and AoI, exploiting the Mixed Integer Linear Programming (MILP) problem. However, due to the NP-hardness of the developed optimization framework for large networks, we have devised a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, supported and enhanced by a Multi-Head Attention (MHA) mechanism for multi-drone-assisted data collection to minimize drone energy consumption and AoI jointly, namely MECAO. The MHA in the MECAO system helps prioritize IoT data sources and ensures the timely collection of important data. This system enables the agents to coordinate effectively among themselves and provides innovative solutions to complex network issues. Our findings demonstrate substantial advancements in real-time data collection and drone performance, offering a practical and efficient solution for modern IoD applications. The developed MECAO system is implemented in the OpenAI Gym simulator platform, and the simulation trace file content depicts the improvement in AoI by up to 56% while the energy consumption is reduced by as high as 38.5%, respectively, compared to the state-of-the-art works.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.