Identifying exaggeration in ESG reports using machine learning techniques

Yunfang Luo , Xiling Cui , Qiang Liu , Qiang Zhou , Yingxuan Zhang
{"title":"Identifying exaggeration in ESG reports using machine learning techniques","authors":"Yunfang Luo ,&nbsp;Xiling Cui ,&nbsp;Qiang Liu ,&nbsp;Qiang Zhou ,&nbsp;Yingxuan Zhang","doi":"10.1016/j.dim.2024.100084","DOIUrl":null,"url":null,"abstract":"<div><div>Exaggeration is a specific way in which companies potentially overstate certain aspects of their actual environmental performance, strategically disclosing positive information about their environmental performance. This research aims to identify instances of exaggerated information within environmental, social, and governance (ESG) reports by employing machine learning techniques. We crawled 594 ESG reports and employed a variety of machine learning algorithms to identify instances of exaggeration. Through the cross-validation, we found that random forest exhibits the best performance in predicting exaggeration and ridge regression demonstrates superior performance in predicting the exaggeration scores. A significant contribution of our study is the development of an exaggerated thesaurus tailored specifically to this domain. Ultimately, our study lays a foundation for further investigations into addressing the impact of exaggerated information in ESG reporting.</div></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"9 2","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925124000202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exaggeration is a specific way in which companies potentially overstate certain aspects of their actual environmental performance, strategically disclosing positive information about their environmental performance. This research aims to identify instances of exaggerated information within environmental, social, and governance (ESG) reports by employing machine learning techniques. We crawled 594 ESG reports and employed a variety of machine learning algorithms to identify instances of exaggeration. Through the cross-validation, we found that random forest exhibits the best performance in predicting exaggeration and ridge regression demonstrates superior performance in predicting the exaggeration scores. A significant contribution of our study is the development of an exaggerated thesaurus tailored specifically to this domain. Ultimately, our study lays a foundation for further investigations into addressing the impact of exaggerated information in ESG reporting.
使用机器学习技术识别ESG报告中的夸大
夸大是一种特定的方式,公司可能夸大其实际环境绩效的某些方面,战略性地披露有关其环境绩效的积极信息。本研究旨在通过使用机器学习技术来识别环境、社会和治理(ESG)报告中夸大信息的实例。我们抓取了594份ESG报告,并使用了各种机器学习算法来识别夸大的实例。通过交叉验证,我们发现随机森林在预测夸张分数方面表现出最好的效果,山脊回归在预测夸张分数方面表现出更好的效果。我们研究的一个重要贡献是专门为这个领域量身定做的夸张的同义词典的发展。最终,我们的研究为进一步研究解决ESG报告中夸大信息的影响奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信