{"title":"A metric for the asymmetry in matched-pair data for buyer–supplier dyads","authors":"ManMohan S. Sodhi","doi":"10.1016/j.ijpe.2025.109653","DOIUrl":null,"url":null,"abstract":"<div><div>Although various difference-based methods are utilized to analyze asymmetry in buyer–supplier matched-pair data within the literature, these approaches are ad hoc and do not always address differences across multiple dimensions. Furthermore, they do not provide a significance test. This paper extends the concept of the paired t-test for dyad-level differences by developing a Mahalanobis distance-based metric in multiple dimensions, along with a significance test. The metric and the significance test can be used in empirical research to identify dyads in a dataset that are significantly asymmetric at any selected confidence level. In practice, the method can identify those suppliers for a buyer that have significantly mismatched expectations relative to other suppliers. The paper utilizes simulated datasets to compare the proposed metric with other distance-based metrics that lack a significance test. Finally, the paper applies a retail dataset to demonstrate (1) the utility of the metric in identifying significantly asymmetric dyads and (2) the use of the same distance concept to consolidate multiple items in any buyer or supplier construct into a single score for the construct, rather than using factor scores. The latter approach is lossless, in contrast to factor analysis. Using distance-based metrics with this retail dataset in a structural equation model suggests that asymmetry can negatively affect relationship-specific operational performance for buyers and suppliers. This study contributes a robust methodological framework, offering a structured basis for future research in the measurement of dyadic asymmetry.</div></div>","PeriodicalId":14287,"journal":{"name":"International Journal of Production Economics","volume":"287 ","pages":"Article 109653"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Economics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925527325001380","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although various difference-based methods are utilized to analyze asymmetry in buyer–supplier matched-pair data within the literature, these approaches are ad hoc and do not always address differences across multiple dimensions. Furthermore, they do not provide a significance test. This paper extends the concept of the paired t-test for dyad-level differences by developing a Mahalanobis distance-based metric in multiple dimensions, along with a significance test. The metric and the significance test can be used in empirical research to identify dyads in a dataset that are significantly asymmetric at any selected confidence level. In practice, the method can identify those suppliers for a buyer that have significantly mismatched expectations relative to other suppliers. The paper utilizes simulated datasets to compare the proposed metric with other distance-based metrics that lack a significance test. Finally, the paper applies a retail dataset to demonstrate (1) the utility of the metric in identifying significantly asymmetric dyads and (2) the use of the same distance concept to consolidate multiple items in any buyer or supplier construct into a single score for the construct, rather than using factor scores. The latter approach is lossless, in contrast to factor analysis. Using distance-based metrics with this retail dataset in a structural equation model suggests that asymmetry can negatively affect relationship-specific operational performance for buyers and suppliers. This study contributes a robust methodological framework, offering a structured basis for future research in the measurement of dyadic asymmetry.
期刊介绍:
The International Journal of Production Economics focuses on the interface between engineering and management. It covers all aspects of manufacturing and process industries, as well as production in general. The journal is interdisciplinary, considering activities throughout the product life cycle and material flow cycle. It aims to disseminate knowledge for improving industrial practice and strengthening the theoretical base for decision making. The journal serves as a forum for exchanging ideas and presenting new developments in theory and application, combining academic standards with practical value for industrial applications.