An insight into parameter identifiability issues in the Carreau–Yasuda model: A more consistent rheological formulation for shear-thinning non-Newtonian inelastic fluids

IF 2.7 2区 工程技术 Q2 MECHANICS
Gianluca Santesarti , Michele Marino , Francesco Viola , Roberto Verzicco , Giuseppe Vairo
{"title":"An insight into parameter identifiability issues in the Carreau–Yasuda model: A more consistent rheological formulation for shear-thinning non-Newtonian inelastic fluids","authors":"Gianluca Santesarti ,&nbsp;Michele Marino ,&nbsp;Francesco Viola ,&nbsp;Roberto Verzicco ,&nbsp;Giuseppe Vairo","doi":"10.1016/j.jnnfm.2025.105438","DOIUrl":null,"url":null,"abstract":"<div><div>The Carreau–Yasuda rheological model is widely employed in both research and industrial applications to describe the shear-thinning behaviour of non-Newtonian inelastic fluids. However, the model parameter traditionally employed to characterize the shear thinning response exhibits only a weak correlation with the actual shear thinning rate observed in experimental data. This limitation leads to intrinsic identifiability issues, which may result in misleading physical interpretations of the model parameters and unreliable flow predictions. Aiming to contribute to overcoming these issues, this paper introduces a novel heuristic rheological formulation for shear-thinning non-Newtonian inelastic fluids, as an alternative to the Carreau–Yasuda model. Analytical results and exemplary numerical case studies demonstrate that the proposed formulation is based on physically meaningful model parameters, whose identifiability is not compromised by the key limitations of the Carreau–Yasuda model. The new approach allows for effective parameter estimation through a straightforward direct identification strategy, eliminating the need for inverse identification procedures based on nonlinear regression techniques. Moreover, the proposed formulation naturally enables the identication of two Carreau numbers based on the two characteristic shear rates of the fluid.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"342 ","pages":"Article 105438"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025725000576","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Carreau–Yasuda rheological model is widely employed in both research and industrial applications to describe the shear-thinning behaviour of non-Newtonian inelastic fluids. However, the model parameter traditionally employed to characterize the shear thinning response exhibits only a weak correlation with the actual shear thinning rate observed in experimental data. This limitation leads to intrinsic identifiability issues, which may result in misleading physical interpretations of the model parameters and unreliable flow predictions. Aiming to contribute to overcoming these issues, this paper introduces a novel heuristic rheological formulation for shear-thinning non-Newtonian inelastic fluids, as an alternative to the Carreau–Yasuda model. Analytical results and exemplary numerical case studies demonstrate that the proposed formulation is based on physically meaningful model parameters, whose identifiability is not compromised by the key limitations of the Carreau–Yasuda model. The new approach allows for effective parameter estimation through a straightforward direct identification strategy, eliminating the need for inverse identification procedures based on nonlinear regression techniques. Moreover, the proposed formulation naturally enables the identication of two Carreau numbers based on the two characteristic shear rates of the fluid.
对careau - yasuda模型中参数可识别性问题的洞察:剪切变薄非牛顿非弹性流体的更一致的流变公式
carau - yasuda流变模型被广泛应用于研究和工业应用中,用于描述非牛顿非弹性流体的剪切减薄行为。然而,传统上用于表征剪切变薄响应的模型参数与实验数据中观察到的实际剪切变薄率只有微弱的相关性。这种限制导致了固有的可识别性问题,这可能导致对模型参数的误导性物理解释和不可靠的流动预测。为了克服这些问题,本文介绍了一种新的启发式流变学公式,用于剪切变薄的非牛顿非弹性流体,作为careau - yasuda模型的替代方案。分析结果和示例性数值案例研究表明,所提出的公式是基于物理上有意义的模型参数,其可识别性不会受到careau - yasuda模型的关键限制的影响。新方法允许有效的参数估计通过一个简单的直接识别策略,消除了对基于非线性回归技术的逆识别过程的需要。此外,所提出的公式自然能够根据流体的两种特征剪切速率来识别两个卡罗数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信