Guo-Zhao Liao , Xiao-Feng Gong , Wei Liu , Hing Cheung So
{"title":"Target localization with coprime multistatic MIMO radar via coupled canonical polyadic decomposition based on joint eigenvalue decomposition","authors":"Guo-Zhao Liao , Xiao-Feng Gong , Wei Liu , Hing Cheung So","doi":"10.1016/j.sigpro.2025.110099","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates target localization using a multistatic multiple-input multiple-output (MIMO) radar system with two distinct coprime array configurations: coprime L-shaped arrays and coprime planar arrays. The observed signals are modeled as tensors that admit a coupled canonical polyadic decomposition (C-CPD) model. For each configuration, a C-CPD method is presented based on joint eigenvalue decomposition (J-EVD). This computational framework includes (semi-)algebraic and optimization-based C-CPD algorithms and target localization that fuses direction-of-arrivals (DOAs) information to calculate the optimal position of each target. Specifically, the proposed (semi-)algebraic methods exploit the rotational invariance of the Vandermonde structure in coprime arrays, similar to the multiple invariance property of estimation of signal parameters via rotational invariance techniques (ESPRIT), which transforms the model into a J-EVD problem and reduces computational complexity. The study also investigates the working conditions of the algorithm to understand model identifiability. Additionally, the proposed method does not rely on prior knowledge of non-orthogonal probing waveforms and is effective in challenging underdetermined scenarios. Experimental results demonstrate that our method outperforms existing tensor-based approaches in both accuracy and computational efficiency.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110099"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425002130","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates target localization using a multistatic multiple-input multiple-output (MIMO) radar system with two distinct coprime array configurations: coprime L-shaped arrays and coprime planar arrays. The observed signals are modeled as tensors that admit a coupled canonical polyadic decomposition (C-CPD) model. For each configuration, a C-CPD method is presented based on joint eigenvalue decomposition (J-EVD). This computational framework includes (semi-)algebraic and optimization-based C-CPD algorithms and target localization that fuses direction-of-arrivals (DOAs) information to calculate the optimal position of each target. Specifically, the proposed (semi-)algebraic methods exploit the rotational invariance of the Vandermonde structure in coprime arrays, similar to the multiple invariance property of estimation of signal parameters via rotational invariance techniques (ESPRIT), which transforms the model into a J-EVD problem and reduces computational complexity. The study also investigates the working conditions of the algorithm to understand model identifiability. Additionally, the proposed method does not rely on prior knowledge of non-orthogonal probing waveforms and is effective in challenging underdetermined scenarios. Experimental results demonstrate that our method outperforms existing tensor-based approaches in both accuracy and computational efficiency.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.