{"title":"Convolutional neural network-based reduced-order modeling for parametric nonlocal PDEs","authors":"Yumeng Wang , Shiping Zhou , Yanzhi Zhang","doi":"10.1016/j.cma.2025.118084","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a convolutional neural network (CNN) based reduced-order modeling (ROM) to solve parametric nonlocal partial differential equations (PDEs). Our method consists of two main components: dimensional reduction with convolutional autoencoder (CAE) and latent-space modeling with CNN or long short-term memory (LSTM) networks. Our neural network-based ROM bypasses the main challenges faced by intrusive approaches for nonlocal problems, such as non-affine parameter dependence and kernel singularities. To address nonlocal inhomogeneous boundary conditions, we introduce two effective strategies. Additionally, we present two approaches for incorporating parameters into the latent space and demonstrate that CNN mappings are particularly efficient for problems with high-dimensional parameter spaces. Our results provide the evidence that deep CAEs can successfully capture nonlocal behaviors, highlighting the promising potential of neural network-based ROMs for nonlocal PDEs. To the best of our knowledge, our method is the first neural network-based ROM methods developed for nonlocal problems. Extensive numerical experiments, including spatial and temporal nonlocal models, demonstrate that our neural network-based ROMs are effective in solving nonlocal problems. Moreover, our studies show that the compression capability of CAE outperforms traditional projection-based methods, especially when handling complex nonlinear problems.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"444 ","pages":"Article 118084"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003561","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a convolutional neural network (CNN) based reduced-order modeling (ROM) to solve parametric nonlocal partial differential equations (PDEs). Our method consists of two main components: dimensional reduction with convolutional autoencoder (CAE) and latent-space modeling with CNN or long short-term memory (LSTM) networks. Our neural network-based ROM bypasses the main challenges faced by intrusive approaches for nonlocal problems, such as non-affine parameter dependence and kernel singularities. To address nonlocal inhomogeneous boundary conditions, we introduce two effective strategies. Additionally, we present two approaches for incorporating parameters into the latent space and demonstrate that CNN mappings are particularly efficient for problems with high-dimensional parameter spaces. Our results provide the evidence that deep CAEs can successfully capture nonlocal behaviors, highlighting the promising potential of neural network-based ROMs for nonlocal PDEs. To the best of our knowledge, our method is the first neural network-based ROM methods developed for nonlocal problems. Extensive numerical experiments, including spatial and temporal nonlocal models, demonstrate that our neural network-based ROMs are effective in solving nonlocal problems. Moreover, our studies show that the compression capability of CAE outperforms traditional projection-based methods, especially when handling complex nonlinear problems.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.