Moritz Korte-Stapff , Toni Karvonen , Éric Moulines
{"title":"Smoothness estimation for Whittle–Matérn processes on closed Riemannian manifolds","authors":"Moritz Korte-Stapff , Toni Karvonen , Éric Moulines","doi":"10.1016/j.spa.2025.104685","DOIUrl":null,"url":null,"abstract":"<div><div>The family of Matérn kernels are often used in spatial statistics, function approximation and Gaussian process methods in machine learning. One reason for their popularity is the presence of a smoothness parameter that controls, for example, optimal error bounds for kriging and posterior contraction rates in Gaussian process regression. On closed Riemannian manifolds, we show that the smoothness parameter can be consistently estimated from the maximizer(s) of the Gaussian likelihood when the underlying data are from point evaluations of a Gaussian process and, perhaps surprisingly, even when the data comprise evaluations of a non-Gaussian process. The points at which the process is observed need not have any particular spatial structure beyond quasi-uniformity. Our methods are based on results from approximation theory for the Sobolev scale of Hilbert spaces. Moreover, we generalize a well-known equivalence of measures phenomenon related to Matérn kernels to the non-Gaussian case by using Kakutani’s theorem.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104685"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001267","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The family of Matérn kernels are often used in spatial statistics, function approximation and Gaussian process methods in machine learning. One reason for their popularity is the presence of a smoothness parameter that controls, for example, optimal error bounds for kriging and posterior contraction rates in Gaussian process regression. On closed Riemannian manifolds, we show that the smoothness parameter can be consistently estimated from the maximizer(s) of the Gaussian likelihood when the underlying data are from point evaluations of a Gaussian process and, perhaps surprisingly, even when the data comprise evaluations of a non-Gaussian process. The points at which the process is observed need not have any particular spatial structure beyond quasi-uniformity. Our methods are based on results from approximation theory for the Sobolev scale of Hilbert spaces. Moreover, we generalize a well-known equivalence of measures phenomenon related to Matérn kernels to the non-Gaussian case by using Kakutani’s theorem.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.