Yiling Wang , Elia Lombardo , Jie Wang , Yu Fan , Yue Zhao , Stefanie Corradini , Claus Belka , Marco Riboldi , Christopher Kurz , Guillaume Landry
{"title":"Real-time target localization on 1.5 T magnetic resonance imaging linac orthogonal cine images using transfer learning","authors":"Yiling Wang , Elia Lombardo , Jie Wang , Yu Fan , Yue Zhao , Stefanie Corradini , Claus Belka , Marco Riboldi , Christopher Kurz , Guillaume Landry","doi":"10.1016/j.phro.2025.100789","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Deep learning-based tumor tracking is promising for real-time magnetic-resonance-imaging (MRI)-guided radiotherapy. We investigate the applicability of a tumor tracking model developed for 0.35 T MRI-linac sagittal cine-MRI for 1.5 T interleaved orthogonal cine-MRI and implement transfer learning to further improve its performance.</div></div><div><h3>Materials and methods</h3><div>We collected 3600 cine-MRI frames in sagittal, coronal and axial planes from 24 patients (validation 10, testing 14) treated on a 1.5 T MRI-linac, where two expert clinicians manually segmented target labels. A transformer-based deformation model trained on 0.35T MRI-linac images (baseline model, BL) was evaluated and used as a starting point to train patient-specific (PS) models. The Dice similarity coefficient (DSC) and the surface distance (50th and 95th percentiles, SD50%, SD95%) were used to compare the obtained target segmentations with the ground truth labels. The percentage of negative Jacobian determinant values (NegJ), accounting for the folding pixel ratio, was determined.</div></div><div><h3>Results</h3><div>Outperformed by all the PS models, the BL model averaged in a DSC of 0.85, SD50% of 1.9 mm, SD95% of 5.9 mm and NegJ of 0.45 % in testing. The best PS model averaged in a DSC of 0.90, SD50% of 1.3 mm, SD95% of 3.9 mm and NegJ of 0.02 % in testing.</div></div><div><h3>Conclusion</h3><div>We have found the 0.35 T model trained on sagittal cine-MRIs cannot be directly applied to a 1.5 T interleaved orthogonal cine-MRI system. However, PS transfer learning could improve the target tracking performance and reach an accuracy comparable to the inter-observer variability.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100789"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Deep learning-based tumor tracking is promising for real-time magnetic-resonance-imaging (MRI)-guided radiotherapy. We investigate the applicability of a tumor tracking model developed for 0.35 T MRI-linac sagittal cine-MRI for 1.5 T interleaved orthogonal cine-MRI and implement transfer learning to further improve its performance.
Materials and methods
We collected 3600 cine-MRI frames in sagittal, coronal and axial planes from 24 patients (validation 10, testing 14) treated on a 1.5 T MRI-linac, where two expert clinicians manually segmented target labels. A transformer-based deformation model trained on 0.35T MRI-linac images (baseline model, BL) was evaluated and used as a starting point to train patient-specific (PS) models. The Dice similarity coefficient (DSC) and the surface distance (50th and 95th percentiles, SD50%, SD95%) were used to compare the obtained target segmentations with the ground truth labels. The percentage of negative Jacobian determinant values (NegJ), accounting for the folding pixel ratio, was determined.
Results
Outperformed by all the PS models, the BL model averaged in a DSC of 0.85, SD50% of 1.9 mm, SD95% of 5.9 mm and NegJ of 0.45 % in testing. The best PS model averaged in a DSC of 0.90, SD50% of 1.3 mm, SD95% of 3.9 mm and NegJ of 0.02 % in testing.
Conclusion
We have found the 0.35 T model trained on sagittal cine-MRIs cannot be directly applied to a 1.5 T interleaved orthogonal cine-MRI system. However, PS transfer learning could improve the target tracking performance and reach an accuracy comparable to the inter-observer variability.