{"title":"Determining the purity of single-helical proteins from electronic specific heat measurements","authors":"Sourav Kundu, Siddhartha Lal","doi":"10.1016/j.physe.2025.116288","DOIUrl":null,"url":null,"abstract":"<div><div>We present a theoretical investigation of the electronic specific heat (ESH) at constant volume (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span>) of single-helical proteins modelled within the tight-binding (TB) framework. We study the effects of environment and biological defects on thermal properties of single-helical proteins. We employ a general TB model to incorporate all parameters relevant to the helical structure of proteins including the long-range hopping. In order to provide additional insights into our results for the ESH, we also study the electronic density of states for various disorder strengths. We observe that the variation of the specific heat with disorder is very different in low and high temperature regimes, though the variation of ESH with temperature possesses a universal pattern upon varying disorder strengths related to environmental effects. Lastly, we propose an interesting application of the ESH spectra of proteins. We show that by studying the ESH of single-helical proteins, one can distinguish a defective sample from a pure one. This observation can serve as the basis of a screening technique that can be applied prior to a whole genome testing, thereby saving valuable time & resources.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116288"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001183","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a theoretical investigation of the electronic specific heat (ESH) at constant volume () of single-helical proteins modelled within the tight-binding (TB) framework. We study the effects of environment and biological defects on thermal properties of single-helical proteins. We employ a general TB model to incorporate all parameters relevant to the helical structure of proteins including the long-range hopping. In order to provide additional insights into our results for the ESH, we also study the electronic density of states for various disorder strengths. We observe that the variation of the specific heat with disorder is very different in low and high temperature regimes, though the variation of ESH with temperature possesses a universal pattern upon varying disorder strengths related to environmental effects. Lastly, we propose an interesting application of the ESH spectra of proteins. We show that by studying the ESH of single-helical proteins, one can distinguish a defective sample from a pure one. This observation can serve as the basis of a screening technique that can be applied prior to a whole genome testing, thereby saving valuable time & resources.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures