A resource for whole-body gene expression map of human tissues based on integration of single cell and bulk transcriptomics

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mengnan Shi, Loren Méar, Max Karlsson, María Bueno Álvez, Andreas Digre, Rutger Schutten, Borbala Katona, Jimmy Vuu, Emil Lindström, Feria Hikmet, Han Jin, Meng Yuan, Xiangyu Li, Hong Yang, Xiya Song, Evelina Sjöstedt, Fredrik Edfors, Per Oksvold, Kalle von Feilitzen, Martin Zwahlen, Mattias Forsberg, Fredric Johansson, Jan Mulder, Tomas Hökfelt, Yonglun Luo, Lynn Butler, Wen Zhong, Adil Mardinoglu, Åsa Sivertsson, Fredrik Ponten, Linn Fagerberg, Cecilia Lindskog, Mathias Uhlén, Cheng Zhang
{"title":"A resource for whole-body gene expression map of human tissues based on integration of single cell and bulk transcriptomics","authors":"Mengnan Shi, Loren Méar, Max Karlsson, María Bueno Álvez, Andreas Digre, Rutger Schutten, Borbala Katona, Jimmy Vuu, Emil Lindström, Feria Hikmet, Han Jin, Meng Yuan, Xiangyu Li, Hong Yang, Xiya Song, Evelina Sjöstedt, Fredrik Edfors, Per Oksvold, Kalle von Feilitzen, Martin Zwahlen, Mattias Forsberg, Fredric Johansson, Jan Mulder, Tomas Hökfelt, Yonglun Luo, Lynn Butler, Wen Zhong, Adil Mardinoglu, Åsa Sivertsson, Fredrik Ponten, Linn Fagerberg, Cecilia Lindskog, Mathias Uhlén, Cheng Zhang","doi":"10.1186/s13059-025-03616-4","DOIUrl":null,"url":null,"abstract":"New technologies enable single-cell transcriptome analysis, mapping genome-wide expression across the human body. Here, we present an extended analysis of protein-coding genes in all major human tissues and organs, combining single-cell and bulk transcriptomics. To enhance transcriptome depth, 31 tissues were analyzed using a pooling method, identifying 557 unique cell clusters, manually annotated by marker gene expression. Genes were classified by body-wide expression and validated through antibody-based profiling. All results are available in the updated open-access Single Cell Type section of the Human Protein Atlas for genome-wide exploration of genes, proteins, and their spatial distribution in cells.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"26 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03616-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

New technologies enable single-cell transcriptome analysis, mapping genome-wide expression across the human body. Here, we present an extended analysis of protein-coding genes in all major human tissues and organs, combining single-cell and bulk transcriptomics. To enhance transcriptome depth, 31 tissues were analyzed using a pooling method, identifying 557 unique cell clusters, manually annotated by marker gene expression. Genes were classified by body-wide expression and validated through antibody-based profiling. All results are available in the updated open-access Single Cell Type section of the Human Protein Atlas for genome-wide exploration of genes, proteins, and their spatial distribution in cells.
基于单细胞和整体转录组学整合的人体组织整体基因表达图谱资源
新技术使单细胞转录组分析成为可能,绘制整个人体的全基因组表达图谱。在这里,我们结合单细胞和大量转录组学,对所有主要人体组织和器官中的蛋白质编码基因进行了扩展分析。为了提高转录组深度,采用池化方法对31个组织进行分析,鉴定出557个独特的细胞簇,并通过标记基因表达手工注释。基因通过全身表达进行分类,并通过基于抗体的谱分析进行验证。所有结果都可以在人类蛋白质图谱的更新开放获取的单细胞类型部分中获得,用于基因,蛋白质及其在细胞中的空间分布的全基因组探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信