Transcriptional analysis of metastatic hormone-naïve prostate cancer primary tumor biopsies reveals a relevant role for SOX11 in prostate cancer cell dissemination
IF 10.1 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Natalia Martin-Martin, Saioa Garcia-Longarte, Jon Corres-Mendizabal, Uxue Lazcano, Ianire Astobiza, Laura Bozal-Basterra, Nicolas Herranz, Hielke van Splunder, Onintza Carlevaris, Mikel Pujana-Vaquerizo, María Teresa Blasco, Ana M. Aransay, Antonio Rosino, Julian Tudela, Daniel Jimenez, Alberto Martinez, Andrei Salca, Aida Santos-Martín, Sofía Rey, Aitziber Ugalde-Olano, David Gonzalo, Mariona Graupera, Roger R. Gomis, Joaquin Mateo, Miguel Unda, Enrique Gonzalez-Billalabeitia, Ana Loizaga-Iriarte, Isabel Mendizabal, Arkaitz Carracedo
{"title":"Transcriptional analysis of metastatic hormone-naïve prostate cancer primary tumor biopsies reveals a relevant role for SOX11 in prostate cancer cell dissemination","authors":"Natalia Martin-Martin, Saioa Garcia-Longarte, Jon Corres-Mendizabal, Uxue Lazcano, Ianire Astobiza, Laura Bozal-Basterra, Nicolas Herranz, Hielke van Splunder, Onintza Carlevaris, Mikel Pujana-Vaquerizo, María Teresa Blasco, Ana M. Aransay, Antonio Rosino, Julian Tudela, Daniel Jimenez, Alberto Martinez, Andrei Salca, Aida Santos-Martín, Sofía Rey, Aitziber Ugalde-Olano, David Gonzalo, Mariona Graupera, Roger R. Gomis, Joaquin Mateo, Miguel Unda, Enrique Gonzalez-Billalabeitia, Ana Loizaga-Iriarte, Isabel Mendizabal, Arkaitz Carracedo","doi":"10.1186/s13059-025-03623-5","DOIUrl":null,"url":null,"abstract":"Metastatic hormone-naïve prostate cancer (mHNPC) is an infrequent form of this tumor type that is characterized by metastasis at the time of diagnosis and accounts for up to 50% of prostate cancer-related deaths. Despite the extensive characterization of localized and metastatic castration-resistant prostate cancer, the molecular characteristics of mHNPC remain largely unexplored. Here, we provide the first extensive transcriptomics characterization of primary tumor specimens from patients with mHNPC. We generate discovery and validation bulk and single-cell RNA-seq datasets and perform integrative computational analysis in combination with experimental studies. Our results provide unprecedented evidence of the distinctive transcriptional profile of mHNPC and identify stroma remodeling as a predominant feature of these tumors. Importantly, we discover a central role for the SRY-box transcription factor 11 (SOX11) in triggering a heterotypic communication that is associated with the acquisition of metastatic properties. Our study will constitute an invaluable resource for a profound understanding of mHNPC that can influence patient management.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"12 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03623-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metastatic hormone-naïve prostate cancer (mHNPC) is an infrequent form of this tumor type that is characterized by metastasis at the time of diagnosis and accounts for up to 50% of prostate cancer-related deaths. Despite the extensive characterization of localized and metastatic castration-resistant prostate cancer, the molecular characteristics of mHNPC remain largely unexplored. Here, we provide the first extensive transcriptomics characterization of primary tumor specimens from patients with mHNPC. We generate discovery and validation bulk and single-cell RNA-seq datasets and perform integrative computational analysis in combination with experimental studies. Our results provide unprecedented evidence of the distinctive transcriptional profile of mHNPC and identify stroma remodeling as a predominant feature of these tumors. Importantly, we discover a central role for the SRY-box transcription factor 11 (SOX11) in triggering a heterotypic communication that is associated with the acquisition of metastatic properties. Our study will constitute an invaluable resource for a profound understanding of mHNPC that can influence patient management.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.