Advances in Feature Selection Using Memetic Algorithms: A Comprehensive Review

Keerthi Gabbi Reddy, Deepasikha Mishra
{"title":"Advances in Feature Selection Using Memetic Algorithms: A Comprehensive Review","authors":"Keerthi Gabbi Reddy, Deepasikha Mishra","doi":"10.1002/widm.70026","DOIUrl":null,"url":null,"abstract":"This review paper presents a comprehensive analysis of the memetic algorithms (MAs) for feature selection (FS), particularly in high‐dimensional datasets. MAs effectively address the challenges of feature selection by combining the global exploration capabilities of evolutionary algorithms with the local optimization of search techniques. Their hybrid nature makes them well suited for tackling the complexity, scalability, and computational demands of FS problems across various domains, including bioinformatics, image processing, and financial forecasting. This review highlights the recent advancements, customized variants, and practical applications of MA‐based FS methods while providing critical insights into their limitations, such as computational overhead and overfitting. Additionally, the paper outlines future research directions to further enhance the efficacy of MAs in feature selection, offering a balanced perspective on their contributions to the field.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper presents a comprehensive analysis of the memetic algorithms (MAs) for feature selection (FS), particularly in high‐dimensional datasets. MAs effectively address the challenges of feature selection by combining the global exploration capabilities of evolutionary algorithms with the local optimization of search techniques. Their hybrid nature makes them well suited for tackling the complexity, scalability, and computational demands of FS problems across various domains, including bioinformatics, image processing, and financial forecasting. This review highlights the recent advancements, customized variants, and practical applications of MA‐based FS methods while providing critical insights into their limitations, such as computational overhead and overfitting. Additionally, the paper outlines future research directions to further enhance the efficacy of MAs in feature selection, offering a balanced perspective on their contributions to the field.
基于模因算法的特征选择研究进展
这篇综述文章提出了一个全面的分析模因算法(MAs)的特征选择(FS),特别是在高维数据集。MAs通过将进化算法的全局探索能力与搜索技术的局部优化能力相结合,有效地解决了特征选择的挑战。它们的混合性质使它们非常适合处理跨各个领域(包括生物信息学、图像处理和财务预测)的复杂性、可伸缩性和计算需求的FS问题。这篇综述强调了基于MA的FS方法的最新进展、定制变体和实际应用,同时提供了对其局限性的关键见解,如计算开销和过拟合。此外,本文还概述了未来的研究方向,以进一步提高MAs在特征选择方面的有效性,并对其在该领域的贡献提供了一个平衡的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信