Three-dimensional sound field reconstruction from optical projections using physics-informed neural networks.

IF 1.2 Q3 ACOUSTICS
Rikuto Ito, Kenji Ishikawa, Risako Tanigawa, Yasuhiro Oikawa
{"title":"Three-dimensional sound field reconstruction from optical projections using physics-informed neural networks.","authors":"Rikuto Ito, Kenji Ishikawa, Risako Tanigawa, Yasuhiro Oikawa","doi":"10.1121/10.0036816","DOIUrl":null,"url":null,"abstract":"<p><p>The implicit representation by physics-informed neural networks (PINNs) serves as an effective solution for a key challenge faced by optical sound measurements. Since optical sound measurements observe line integral of the sound pressure along the optical path, reconstruction is necessary to determine the sound pressure at each point in the three-dimensional field. In this paper, we expand the PINNs-based reconstruction method into three-dimensional reconstruction and demonstrate its effectiveness for optically measured sound fields. Furthermore, we propose a reconstruction approach which can estimate solutions well outside the bounds of the data used for training.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The implicit representation by physics-informed neural networks (PINNs) serves as an effective solution for a key challenge faced by optical sound measurements. Since optical sound measurements observe line integral of the sound pressure along the optical path, reconstruction is necessary to determine the sound pressure at each point in the three-dimensional field. In this paper, we expand the PINNs-based reconstruction method into three-dimensional reconstruction and demonstrate its effectiveness for optically measured sound fields. Furthermore, we propose a reconstruction approach which can estimate solutions well outside the bounds of the data used for training.

利用物理信息神经网络从光学投影中重建三维声场。
物理信息神经网络(pinn)的隐式表示是光学声音测量面临的关键挑战的有效解决方案。由于光学声测量观测的是声压沿光路的线积分,因此需要进行重建以确定三维场中每个点的声压。本文将基于pnas的声场重建方法扩展到三维重建中,并验证了其对光测声场的有效性。此外,我们提出了一种重建方法,可以很好地估计用于训练的数据边界之外的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信