{"title":"Improving AlphaFold2- and AlphaFold3-Based Protein Complex Structure Prediction With MULTICOM4 in CASP16.","authors":"Jian Liu, Pawan Neupane, Jianlin Cheng","doi":"10.1002/prot.26850","DOIUrl":null,"url":null,"abstract":"<p><p>With AlphaFold achieving high-accuracy tertiary structure prediction for most single-chain proteins (monomers), the next major challenge in protein structure prediction is to accurately model multichain protein complexes (multimers). We developed MULTICOM4, the latest version of the MULTICOM system, to improve protein complex structure prediction by integrating transformer-based AlphaFold2, diffusion model-based AlphaFold3, and our in-house techniques. These include protein complex stoichiometry prediction, diverse multiple sequence alignment (MSA) generation leveraging both sequence and structure comparison, modeling exception handling, and deep learning-based protein model quality assessment. MULTICOM4 was blindly evaluated in the 16th Critical Assessment of Techniques for Protein Structure Prediction (CASP16) in 2024. In Phase 0 of CASP16, where stoichiometry information was unavailable, MULTICOM predictors performed best, with MULTICOM_human achieving a TM-score of 0.752 and a DockQ score of 0.584 for top-ranked predictions on average. In Phase 1 of CASP16, with stoichiometry information provided, MULTICOM_human remained among the top predictors, attaining a TM-score of 0.797 and a DockQ score of 0.558 on average. The CASP16 results demonstrate that integrating complementary AlphaFold2 and AlphaFold3 with enhanced MSA inputs, comprehensive model ranking, exception handling, and accurate stoichiometry prediction can effectively improve protein complex structure prediction.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26850","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With AlphaFold achieving high-accuracy tertiary structure prediction for most single-chain proteins (monomers), the next major challenge in protein structure prediction is to accurately model multichain protein complexes (multimers). We developed MULTICOM4, the latest version of the MULTICOM system, to improve protein complex structure prediction by integrating transformer-based AlphaFold2, diffusion model-based AlphaFold3, and our in-house techniques. These include protein complex stoichiometry prediction, diverse multiple sequence alignment (MSA) generation leveraging both sequence and structure comparison, modeling exception handling, and deep learning-based protein model quality assessment. MULTICOM4 was blindly evaluated in the 16th Critical Assessment of Techniques for Protein Structure Prediction (CASP16) in 2024. In Phase 0 of CASP16, where stoichiometry information was unavailable, MULTICOM predictors performed best, with MULTICOM_human achieving a TM-score of 0.752 and a DockQ score of 0.584 for top-ranked predictions on average. In Phase 1 of CASP16, with stoichiometry information provided, MULTICOM_human remained among the top predictors, attaining a TM-score of 0.797 and a DockQ score of 0.558 on average. The CASP16 results demonstrate that integrating complementary AlphaFold2 and AlphaFold3 with enhanced MSA inputs, comprehensive model ranking, exception handling, and accurate stoichiometry prediction can effectively improve protein complex structure prediction.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.