Lei Dou, Jianhui Jiang, Hongbing Yao, Bo Zhang, Xueyao Wang
{"title":"Exploring <i>SLC25A42</i> as a Radiogenomic Marker from the Perioperative Stage to Chemotherapy in Hepatitis-Related Hepatocellular Carcinoma.","authors":"Lei Dou, Jianhui Jiang, Hongbing Yao, Bo Zhang, Xueyao Wang","doi":"10.1089/cbr.2025.0094","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The molecular mechanisms driving hepatocellular carcinoma (HCC) and predict the chemotherapy sensitive remain unclear; therefore, identification of these key biomarkers is essential for early diagnosis and treatment of HCC. <b><i>Method:</i></b> We collected and processed Computed Tomography (CT) and clinical data from 116 patients with autoimmune hepatitis (AIH) and HCC who came to our hospital's Liver Cancer Center. We then identified and extracted important characteristic features of significant patient images and correlated them with mitochondria-related genes using machine learning techniques such as multihead attention networks, lasso regression, principal component analysis (PCA), and support vector machines (SVM). These genes were integrated into radiomics signature models to explore their role in disease progression. We further correlated these results with clinical variables to screen for driver genes and evaluate the predict ability of chemotherapy sensitive of key genes in liver cancer (LC) patients. Finally, qPCR was used to validate the expression of this gene in patient samples. <b><i>Results:</i></b> Our study utilized attention networks to identify disease regions in medical images with 97% accuracy and an AUC of 94%. We extracted 942 imaging features, identifying five key features through lasso regression that accurately differentiate AIH from HCC. Transcriptome analysis revealed 132 upregulated and 101 downregulated genes in AIH, with 45 significant genes identified by XGBOOST. In HCC analysis, PCA and random forest highlighted 11 key features. Among mitochondrial genes, <i>SLC25A42</i> correlated positively with normal tissue imaging features but negatively with cancerous tissues and was identified as a driver gene. Low expression of <i>SLC25A42</i> was associated with chemotherapy sensitive in HCC patients. <b><i>Conclusions:</i></b> In conclusion, machine learning modeling combined with genomic profiling provides a promising approach to identify the driver gene <i>SLC25A42</i> in LC, which may help improve diagnostic accuracy and chemotherapy sensitivity for this disease.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2025.0094","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The molecular mechanisms driving hepatocellular carcinoma (HCC) and predict the chemotherapy sensitive remain unclear; therefore, identification of these key biomarkers is essential for early diagnosis and treatment of HCC. Method: We collected and processed Computed Tomography (CT) and clinical data from 116 patients with autoimmune hepatitis (AIH) and HCC who came to our hospital's Liver Cancer Center. We then identified and extracted important characteristic features of significant patient images and correlated them with mitochondria-related genes using machine learning techniques such as multihead attention networks, lasso regression, principal component analysis (PCA), and support vector machines (SVM). These genes were integrated into radiomics signature models to explore their role in disease progression. We further correlated these results with clinical variables to screen for driver genes and evaluate the predict ability of chemotherapy sensitive of key genes in liver cancer (LC) patients. Finally, qPCR was used to validate the expression of this gene in patient samples. Results: Our study utilized attention networks to identify disease regions in medical images with 97% accuracy and an AUC of 94%. We extracted 942 imaging features, identifying five key features through lasso regression that accurately differentiate AIH from HCC. Transcriptome analysis revealed 132 upregulated and 101 downregulated genes in AIH, with 45 significant genes identified by XGBOOST. In HCC analysis, PCA and random forest highlighted 11 key features. Among mitochondrial genes, SLC25A42 correlated positively with normal tissue imaging features but negatively with cancerous tissues and was identified as a driver gene. Low expression of SLC25A42 was associated with chemotherapy sensitive in HCC patients. Conclusions: In conclusion, machine learning modeling combined with genomic profiling provides a promising approach to identify the driver gene SLC25A42 in LC, which may help improve diagnostic accuracy and chemotherapy sensitivity for this disease.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.