Do Human Reinforcement Learning Models Account for Key Experimental Choice Patterns in the Iowa Gambling Task?

Computational brain & behavior Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI:10.1007/s42113-024-00228-2
Sherwin Nedaei Janbesaraei, Amir Hosein Hadian Rasanan, Vahid Nejati, Jamal Amani Rad
{"title":"Do Human Reinforcement Learning Models Account for Key Experimental Choice Patterns in the Iowa Gambling Task?","authors":"Sherwin Nedaei Janbesaraei, Amir Hosein Hadian Rasanan, Vahid Nejati, Jamal Amani Rad","doi":"10.1007/s42113-024-00228-2","DOIUrl":null,"url":null,"abstract":"<p><p>The Iowa gambling task (IGT) is widely used to study risky decision-making and learning from rewards and punishments. Although numerous cognitive models have been developed using reinforcement learning frameworks to investigate the processes underlying the IGT, no single model has consistently been identified as superior, largely due to the overlooked importance of model flexibility in capturing choice patterns. This study examines whether human reinforcement learning models adequately capture key experimental choice patterns observed in IGT data. Using simulation and parameter space partitioning (PSP) methods, we explored the parameter space of two recently introduced models-Outcome-Representation Learning and Value plus Sequential Exploration-alongside four traditional models. PSP, a global analysis method, investigates what patterns are relevant to the parameters' spaces of a model, thereby providing insights into model flexibility. The PSP study revealed varying potentials among candidate models to generate relevant choice patterns in IGT, suggesting that model selection may be dependent on the specific choice patterns present in a given dataset. We investigated central choice patterns and fitted all models by analyzing a comprehensive data pool (<i>N</i> = 1428) comprising 45 behavioral datasets from both healthy and clinical populations. Applying Akaike and Bayesian information criteria, we found that the Value plus Sequential Exploration model outperformed others due to its balanced potential to generate all experimentally observed choice patterns. These findings suggested that the search for a suitable IGT model may have reached its conclusion, emphasizing the importance of aligning a model's parameter space with experimentally observed choice patterns for achieving high accuracy in cognitive modeling.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"8 2","pages":"286-320"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-024-00228-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Iowa gambling task (IGT) is widely used to study risky decision-making and learning from rewards and punishments. Although numerous cognitive models have been developed using reinforcement learning frameworks to investigate the processes underlying the IGT, no single model has consistently been identified as superior, largely due to the overlooked importance of model flexibility in capturing choice patterns. This study examines whether human reinforcement learning models adequately capture key experimental choice patterns observed in IGT data. Using simulation and parameter space partitioning (PSP) methods, we explored the parameter space of two recently introduced models-Outcome-Representation Learning and Value plus Sequential Exploration-alongside four traditional models. PSP, a global analysis method, investigates what patterns are relevant to the parameters' spaces of a model, thereby providing insights into model flexibility. The PSP study revealed varying potentials among candidate models to generate relevant choice patterns in IGT, suggesting that model selection may be dependent on the specific choice patterns present in a given dataset. We investigated central choice patterns and fitted all models by analyzing a comprehensive data pool (N = 1428) comprising 45 behavioral datasets from both healthy and clinical populations. Applying Akaike and Bayesian information criteria, we found that the Value plus Sequential Exploration model outperformed others due to its balanced potential to generate all experimentally observed choice patterns. These findings suggested that the search for a suitable IGT model may have reached its conclusion, emphasizing the importance of aligning a model's parameter space with experimentally observed choice patterns for achieving high accuracy in cognitive modeling.

人类强化学习模型是否解释了爱荷华赌博任务中的关键实验选择模式?
爱荷华赌博任务(IGT)被广泛用于研究风险决策和从奖励和惩罚中学习。尽管使用强化学习框架开发了许多认知模型来研究IGT背后的过程,但没有一个模型一直被认为是优越的,这主要是由于在捕获选择模式时忽视了模型灵活性的重要性。本研究考察了人类强化学习模型是否能充分捕捉IGT数据中观察到的关键实验选择模式。利用仿真和参数空间划分(PSP)方法,我们探索了最近引入的两个模型的参数空间-结果-表示学习和价值加顺序探索-以及四个传统模型。PSP是一种全局分析方法,研究与模型参数空间相关的模式,从而提供对模型灵活性的见解。PSP研究揭示了候选模型在IGT中产生相关选择模式的不同潜力,表明模型选择可能依赖于给定数据集中存在的特定选择模式。我们研究了中心选择模式,并通过分析一个综合数据池(N = 1428)来拟合所有模型,该数据池包括来自健康人群和临床人群的45个行为数据集。应用赤池和贝叶斯信息标准,我们发现价值加顺序探索模型优于其他模型,因为它具有平衡的潜力,可以生成所有实验观察到的选择模式。这些发现表明,寻找合适的IGT模型可能已经得出结论,强调了将模型的参数空间与实验观察到的选择模式对齐的重要性,以实现认知建模的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信