{"title":"Towards understanding the functional connectivity patterns in visual brain network.","authors":"Debanjali Bhattacharya, Neelam Sinha","doi":"10.1007/s11517-025-03389-9","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in neuroimaging have enabled studies in functional connectivity (FC) of human brain, alongside investigation of the neuronal basis of cognition. One important FC study is the representation of vision in human brain. The release of publicly available dataset \"BOLD5000\" has made it possible to study the brain dynamics during visual tasks in greater detail. In this paper, a comprehensive analysis of fMRI time series (TS) has been performed to explore different types of visual brain networks (VBN). The novelty of this work lies in (1) constructing VBN with consistently significant direct connectivity using both marginal and partial correlation, which is further analyzed using graph theoretic measures, and (2) classification of VBNs as formed by image complexity-specific TS, using graphical features. In image complexity-specific VBN classification, XGBoost yields average accuracy in the range of 86.5 to 91.5% for positively correlated VBN, which is 2% greater than that using negative correlation. This result not only reflects the distinguishing graphical characteristics of each image complexity-specific VBN, but also highlights the importance of studying both correlated and anti-correlated VBN to understand how differently brain functions while viewing different complexities of real-world images.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3139-3152"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03389-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in neuroimaging have enabled studies in functional connectivity (FC) of human brain, alongside investigation of the neuronal basis of cognition. One important FC study is the representation of vision in human brain. The release of publicly available dataset "BOLD5000" has made it possible to study the brain dynamics during visual tasks in greater detail. In this paper, a comprehensive analysis of fMRI time series (TS) has been performed to explore different types of visual brain networks (VBN). The novelty of this work lies in (1) constructing VBN with consistently significant direct connectivity using both marginal and partial correlation, which is further analyzed using graph theoretic measures, and (2) classification of VBNs as formed by image complexity-specific TS, using graphical features. In image complexity-specific VBN classification, XGBoost yields average accuracy in the range of 86.5 to 91.5% for positively correlated VBN, which is 2% greater than that using negative correlation. This result not only reflects the distinguishing graphical characteristics of each image complexity-specific VBN, but also highlights the importance of studying both correlated and anti-correlated VBN to understand how differently brain functions while viewing different complexities of real-world images.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).