Jiawei Jin, Sen Yang, Jigang Tong, Kai Zhang, Zenghui Wang
{"title":"Slim UNETR++: A lightweight 3D medical image segmentation network for medical image analysis.","authors":"Jiawei Jin, Sen Yang, Jigang Tong, Kai Zhang, Zenghui Wang","doi":"10.1007/s11517-025-03390-2","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural network (CNN) models, such as U-Net, V-Net, and DeepLab, have achieved remarkable results across various medical imaging modalities, and ultrasound. Additionally, hybrid Transformer-based segmentation methods have shown great potential in medical image analysis. Despite the breakthroughs in feature extraction through self-attention mechanisms, these methods are computationally intensive, especially for three-dimensional medical imaging, posing significant challenges to graphics processing unit (GPU) hardware. Consequently, the demand for lightweight models is increasing. To address this issue, we designed a high-accuracy yet lightweight model that combines the strengths of CNNs and Transformers. We introduce Slim UNEt TRansformers++ (Slim UNETR++), which builds upon Slim UNETR by incorporating Medical ConvNeXt (MedNeXt), Spatial-Channel Attention (SCA), and Efficient Paired-Attention (EPA) modules. This integration leverages the advantages of both CNN and Transformer architectures to enhance model accuracy. The core component of Slim UNETR++ is the Slim UNETR++ block, which facilitates efficient information exchange through a sparse self-attention mechanism and low-cost representation aggregation. We also introduced throughput as a performance metric to quantify data processing speed. Experimental results demonstrate that Slim UNETR++ outperforms other models in terms of accuracy and model size. On the BraTS2021 dataset, Slim UNETR++ achieved a Dice accuracy of 93.12% and a 95% Hausdorff distance (HD95) of 4.23mm, significantly surpassing mainstream relevant methods such as Swin UNETR.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3123-3137"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03390-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural network (CNN) models, such as U-Net, V-Net, and DeepLab, have achieved remarkable results across various medical imaging modalities, and ultrasound. Additionally, hybrid Transformer-based segmentation methods have shown great potential in medical image analysis. Despite the breakthroughs in feature extraction through self-attention mechanisms, these methods are computationally intensive, especially for three-dimensional medical imaging, posing significant challenges to graphics processing unit (GPU) hardware. Consequently, the demand for lightweight models is increasing. To address this issue, we designed a high-accuracy yet lightweight model that combines the strengths of CNNs and Transformers. We introduce Slim UNEt TRansformers++ (Slim UNETR++), which builds upon Slim UNETR by incorporating Medical ConvNeXt (MedNeXt), Spatial-Channel Attention (SCA), and Efficient Paired-Attention (EPA) modules. This integration leverages the advantages of both CNN and Transformer architectures to enhance model accuracy. The core component of Slim UNETR++ is the Slim UNETR++ block, which facilitates efficient information exchange through a sparse self-attention mechanism and low-cost representation aggregation. We also introduced throughput as a performance metric to quantify data processing speed. Experimental results demonstrate that Slim UNETR++ outperforms other models in terms of accuracy and model size. On the BraTS2021 dataset, Slim UNETR++ achieved a Dice accuracy of 93.12% and a 95% Hausdorff distance (HD95) of 4.23mm, significantly surpassing mainstream relevant methods such as Swin UNETR.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).