Diana M Escamilla, Dongdong Li, Karlene L Negus, Kiara L Kappelmann, Aaron Kusmec, Adam E Vanous, Patrick S Schnable, Xianran Li, Jianming Yu
{"title":"Genomic selection: Essence, applications, and prospects.","authors":"Diana M Escamilla, Dongdong Li, Karlene L Negus, Kiara L Kappelmann, Aaron Kusmec, Adam E Vanous, Patrick S Schnable, Xianran Li, Jianming Yu","doi":"10.1002/tpg2.70053","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic selection (GS) emerged as a key part of the solution to ensure the food supply for the growing human population thanks to advances in genotyping and other enabling technologies and improved understanding of the genotype-phenotype relationship in quantitative genetics. GS is a breeding strategy to predict the genotypic values of individuals for selection using their genotypic data and a trained model. It includes four major steps: training population design, model building, prediction, and selection. GS revises the traditional breeding process by assigning phenotyping a new role of generating data for the building of prediction models. The increased capacity of GS to evaluate more individuals, in combination with shorter breeding cycle times, has led to wide adoption in plant breeding. Research studies have been conducted to implement GS with different emphases in crop- and trait-specific applications, prediction models, design of training populations, and identifying factors influencing prediction accuracy. GS plays different roles in plant breeding such as turbocharging of gene banks, parental selection, and candidate selection at different stages of the breeding cycle. It can be enhanced by additional data types such as phenomics, transcriptomics, metabolomics, and enviromics. In light of the rapid development of artificial intelligence, GS can be further improved by either upgrading the entire framework or individual components. Technological advances, research innovations, and emerging challenges in agriculture will continue to shape the role of GS in plant breeding.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 2","pages":"e70053"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70053","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic selection (GS) emerged as a key part of the solution to ensure the food supply for the growing human population thanks to advances in genotyping and other enabling technologies and improved understanding of the genotype-phenotype relationship in quantitative genetics. GS is a breeding strategy to predict the genotypic values of individuals for selection using their genotypic data and a trained model. It includes four major steps: training population design, model building, prediction, and selection. GS revises the traditional breeding process by assigning phenotyping a new role of generating data for the building of prediction models. The increased capacity of GS to evaluate more individuals, in combination with shorter breeding cycle times, has led to wide adoption in plant breeding. Research studies have been conducted to implement GS with different emphases in crop- and trait-specific applications, prediction models, design of training populations, and identifying factors influencing prediction accuracy. GS plays different roles in plant breeding such as turbocharging of gene banks, parental selection, and candidate selection at different stages of the breeding cycle. It can be enhanced by additional data types such as phenomics, transcriptomics, metabolomics, and enviromics. In light of the rapid development of artificial intelligence, GS can be further improved by either upgrading the entire framework or individual components. Technological advances, research innovations, and emerging challenges in agriculture will continue to shape the role of GS in plant breeding.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.