Integrating support vector machines and deep learning features for oral cancer histopathology analysis.

IF 1.3 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-05-05 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf034
Tuan D Pham
{"title":"Integrating support vector machines and deep learning features for oral cancer histopathology analysis.","authors":"Tuan D Pham","doi":"10.1093/biomethods/bpaf034","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an approach to classifying histopathological images for detecting dysplasia in oral cancer through the fusion of support vector machine (SVM) classifiers trained on deep learning features extracted from InceptionResNet-v2 and vision transformer (ViT) models. The classification of dysplasia, a critical indicator of oral cancer progression, is often complicated by class imbalance, with a higher prevalence of dysplastic lesions compared to non-dysplastic cases. This research addresses this challenge by leveraging the complementary strengths of the two models. The InceptionResNet-v2 model, paired with an SVM classifier, excels in identifying the presence of dysplasia, capturing fine-grained morphological features indicative of the condition. In contrast, the ViT-based SVM demonstrates superior performance in detecting the absence of dysplasia, effectively capturing global contextual information from the images. A fusion strategy was employed to combine these classifiers through class selection: the majority class (presence of dysplasia) was predicted using the InceptionResNet-v2-SVM, while the minority class (absence of dysplasia) was predicted using the ViT-SVM. The fusion approach significantly outperformed individual models and other state-of-the-art methods, achieving superior balanced accuracy, sensitivity, precision, and area under the curve. This demonstrates its ability to handle class imbalance effectively while maintaining high diagnostic accuracy. The results highlight the potential of integrating deep learning feature extraction with SVM classifiers to improve classification performance in complex medical imaging tasks. This study underscores the value of combining complementary classification strategies to address the challenges of class imbalance and improve diagnostic workflows.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf034"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an approach to classifying histopathological images for detecting dysplasia in oral cancer through the fusion of support vector machine (SVM) classifiers trained on deep learning features extracted from InceptionResNet-v2 and vision transformer (ViT) models. The classification of dysplasia, a critical indicator of oral cancer progression, is often complicated by class imbalance, with a higher prevalence of dysplastic lesions compared to non-dysplastic cases. This research addresses this challenge by leveraging the complementary strengths of the two models. The InceptionResNet-v2 model, paired with an SVM classifier, excels in identifying the presence of dysplasia, capturing fine-grained morphological features indicative of the condition. In contrast, the ViT-based SVM demonstrates superior performance in detecting the absence of dysplasia, effectively capturing global contextual information from the images. A fusion strategy was employed to combine these classifiers through class selection: the majority class (presence of dysplasia) was predicted using the InceptionResNet-v2-SVM, while the minority class (absence of dysplasia) was predicted using the ViT-SVM. The fusion approach significantly outperformed individual models and other state-of-the-art methods, achieving superior balanced accuracy, sensitivity, precision, and area under the curve. This demonstrates its ability to handle class imbalance effectively while maintaining high diagnostic accuracy. The results highlight the potential of integrating deep learning feature extraction with SVM classifiers to improve classification performance in complex medical imaging tasks. This study underscores the value of combining complementary classification strategies to address the challenges of class imbalance and improve diagnostic workflows.

结合支持向量机与深度学习的口腔癌组织病理学分析。
本研究介绍了一种基于深度学习特征的支持向量机(SVM)分类器的口腔癌组织病理学图像分类方法,该分类器从InceptionResNet-v2和视觉变压器(ViT)模型中提取。不典型增生的分类是口腔癌进展的一个关键指标,但由于分类不平衡而变得复杂,与非不典型增生病例相比,不典型增生病变的患病率更高。本研究通过利用两种模型的互补优势来解决这一挑战。与SVM分类器配对的inception - resnet -v2模型在识别发育不良的存在、捕捉指示该病症的细粒度形态特征方面表现出色。相比之下,基于vit的SVM在检测不典型增生方面表现出优越的性能,有效地从图像中捕获全局上下文信息。采用融合策略通过类别选择将这些分类器组合在一起:使用InceptionResNet-v2-SVM预测大多数类别(存在不典型增生),而使用viti - svm预测少数类别(不典型增生)。融合方法显著优于单个模型和其他最先进的方法,实现了卓越的平衡精度、灵敏度、精度和曲线下面积。这表明它能够有效地处理类不平衡,同时保持较高的诊断准确性。结果突出了将深度学习特征提取与支持向量机分类器相结合的潜力,以提高复杂医学成像任务的分类性能。这项研究强调了结合互补分类策略来解决类别不平衡的挑战和改进诊断工作流程的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信