KILDA: identifying KIV-2 repeats from kmers.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-05-30 eCollection Date: 2025-06-01 DOI:10.1093/nargab/lqaf070
Corentin Molitor, Timothy Labidi, Antoine Rimbert, Bertrand Cariou, Mathilde Di Filippo, Claire Bardel
{"title":"KILDA: identifying KIV-2 repeats from kmers.","authors":"Corentin Molitor, Timothy Labidi, Antoine Rimbert, Bertrand Cariou, Mathilde Di Filippo, Claire Bardel","doi":"10.1093/nargab/lqaf070","DOIUrl":null,"url":null,"abstract":"<p><p>High concentration of lipoprotein(a) [Lp(a)], a lipoprotein with proatherogenic properties, is an important risk factor for cardiovascular disease. This concentration is mostly genetically determined by a complex interplay between the number of kringle IV type 2 repeats and Lp(a)-affecting variants. Besides Lp(a) plasma concentration, there is an unmet need to identify individuals most at risk based on their <i>LPA</i> genotype. We developed KILDA (KIv2 Length Determined from a kmer Analysis), a Nextflow pipeline, to identify the number of kringle IV type 2 repeats and Lp(a)-affecting variants directly from kmers generated from FASTQ files. The pipeline was tested on the 1000 Genomes Project (<i>n</i> = 2459) and results were equivalent to DRAGEN-LPA (<i>R</i> <sup>2</sup>= 0.92). <i>In silico</i> datasets proved the robustness of KILDA's predictions under different scenarios of sequencing coverage and quality. In brief, KILDA is a robust, open-source, and free-to-use pipeline that can identify the number of kringle IV type 2 repeats and Lp(a)-associated variants even when inputting low-coverage libraries.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf070"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

High concentration of lipoprotein(a) [Lp(a)], a lipoprotein with proatherogenic properties, is an important risk factor for cardiovascular disease. This concentration is mostly genetically determined by a complex interplay between the number of kringle IV type 2 repeats and Lp(a)-affecting variants. Besides Lp(a) plasma concentration, there is an unmet need to identify individuals most at risk based on their LPA genotype. We developed KILDA (KIv2 Length Determined from a kmer Analysis), a Nextflow pipeline, to identify the number of kringle IV type 2 repeats and Lp(a)-affecting variants directly from kmers generated from FASTQ files. The pipeline was tested on the 1000 Genomes Project (n = 2459) and results were equivalent to DRAGEN-LPA (R 2= 0.92). In silico datasets proved the robustness of KILDA's predictions under different scenarios of sequencing coverage and quality. In brief, KILDA is a robust, open-source, and free-to-use pipeline that can identify the number of kringle IV type 2 repeats and Lp(a)-associated variants even when inputting low-coverage libraries.

Abstract Image

KILDA:从kmers中鉴定KIV-2重复序列。
高浓度脂蛋白(a) [Lp(a)]是一种具有致动脉粥样硬化特性的脂蛋白,是心血管疾病的重要危险因素。这种浓度主要是由kringle IV 2型重复序列数量和Lp(a)影响变异之间的复杂相互作用决定的。除了Lp(a)血浆浓度外,根据LPA基因型确定高危个体的需求尚未得到满足。我们开发了KILDA (KIv2 Length Determined from a kmer Analysis),这是Nextflow的一个管道,用于直接从FASTQ文件生成的kmers中识别kringle IV型2重复序列和Lp(a)影响变异的数量。该管道在1000基因组计划(n = 2459)中进行了测试,结果与DRAGEN-LPA相当(r2 = 0.92)。在硅数据集证明了KILDA的预测在不同的测序覆盖率和质量情况下的稳健性。简而言之,KILDA是一个强大的、开源的、免费使用的管道,即使在输入低覆盖率的库时,也可以识别kringle IV型2重复和Lp(a)相关变体的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信