Simon Graf, Josefine Trapp, Maik Rothe, Alexander Gussew, Walter A Wohlgemuth, Andreas Deistung
{"title":"A dedicated phantom for exploring the interplay of fat and paramagnetic substances in quantitative susceptibility mapping.","authors":"Simon Graf, Josefine Trapp, Maik Rothe, Alexander Gussew, Walter A Wohlgemuth, Andreas Deistung","doi":"10.1007/s10334-025-01261-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate quantitative tissue characterization in organs with considerable fat content, like the liver, requires thorough understanding of fat's influence on the MR signal. To continue the investigations into the use of quantitative susceptibility mapping (QSM) in abdominal regions, we present a dedicated phantom that replicates liver-like conditions in terms of effective transverse relaxation rates (R<sub>2</sub>*) and proton density fat fractions.</p><p><strong>Materials and methods: </strong>The spherical agar phantom consists of nine smaller spheres (diameter: 3 cm) doped with a paramagnetic substance (iron nanoparticles or manganese chloride) and fat (peanut oil), embedded in a large agar sphere (diameter: 14 cm), ensuring no barriers exist between the enclosed spheres and their surrounding medium. Concentrations were selected to represent both healthy and pathologic conditions. 3T MRI measurements for relaxometry, fat-water imaging, and QSM were conducted with the head coil and for <sup>1</sup>H-spectroscopy with the knee coil at three time points, including a scan-rescan assessment and a follow-up measurement 14 months later.</p><p><strong>Results: </strong>The phantoms' relaxation and magnetic properties are in similar range as reported for liver tissue. Substantial alterations in local field and susceptilibty maps were observed in regions with elevated fat and iron content, where fat correction of the local field via chemical shift-encoded reconstruction effectively reduced streaking artifacts in susceptibility maps and substantially increased susceptibility values. Linear regression analysis revealed a consistent linear relationship between R<sub>2</sub>* and magnetic susceptibility, as well as iron concentration and magnetic susceptibility. The relaxation, fat, and susceptibility measurements remained stable across scan-rescan assessment and long-term follow-up.</p><p><strong>Discussion: </strong>We developed a versatile phantom to study fat-iron interactions in abdominal imaging, facilitating the optimization and comparison of susceptibility processing methods in future research.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01261-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Accurate quantitative tissue characterization in organs with considerable fat content, like the liver, requires thorough understanding of fat's influence on the MR signal. To continue the investigations into the use of quantitative susceptibility mapping (QSM) in abdominal regions, we present a dedicated phantom that replicates liver-like conditions in terms of effective transverse relaxation rates (R2*) and proton density fat fractions.
Materials and methods: The spherical agar phantom consists of nine smaller spheres (diameter: 3 cm) doped with a paramagnetic substance (iron nanoparticles or manganese chloride) and fat (peanut oil), embedded in a large agar sphere (diameter: 14 cm), ensuring no barriers exist between the enclosed spheres and their surrounding medium. Concentrations were selected to represent both healthy and pathologic conditions. 3T MRI measurements for relaxometry, fat-water imaging, and QSM were conducted with the head coil and for 1H-spectroscopy with the knee coil at three time points, including a scan-rescan assessment and a follow-up measurement 14 months later.
Results: The phantoms' relaxation and magnetic properties are in similar range as reported for liver tissue. Substantial alterations in local field and susceptilibty maps were observed in regions with elevated fat and iron content, where fat correction of the local field via chemical shift-encoded reconstruction effectively reduced streaking artifacts in susceptibility maps and substantially increased susceptibility values. Linear regression analysis revealed a consistent linear relationship between R2* and magnetic susceptibility, as well as iron concentration and magnetic susceptibility. The relaxation, fat, and susceptibility measurements remained stable across scan-rescan assessment and long-term follow-up.
Discussion: We developed a versatile phantom to study fat-iron interactions in abdominal imaging, facilitating the optimization and comparison of susceptibility processing methods in future research.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.