In vivo silencing of the thalamic CaV3.1 voltage-gated calcium channels demonstrates their region-specific role in anesthetic mediated hypnosis.

IF 2.8 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Experimental Biology and Medicine Pub Date : 2025-05-16 eCollection Date: 2025-01-01 DOI:10.3389/ebm.2025.10553
Tamara Timic Stamenic, Simon Feseha, Brier Fine-Raquet, Vasilije P Tadic, Slobodan M Todorovic
{"title":"<i>In vivo</i> silencing of the thalamic Ca<sub>V</sub>3.1 voltage-gated calcium channels demonstrates their region-specific role in anesthetic mediated hypnosis.","authors":"Tamara Timic Stamenic, Simon Feseha, Brier Fine-Raquet, Vasilije P Tadic, Slobodan M Todorovic","doi":"10.3389/ebm.2025.10553","DOIUrl":null,"url":null,"abstract":"<p><p>Although substantial progress has been made in the last three decades towards our understanding of how general anesthetics (GAs) act at the molecular level, much less is known about how GAs cause loss of consciousness at the level of neuronal networks. The role of thalamus as an important brain region in anesthetic-induced hypnosis is relatively well established, but the specific roles of voltage-gated ion channels in different functional regions of the thalamus in anesthetic mechanisms are not well studied. To address this gap in knowledge, we selectively silenced the <i>Cacna1g</i> gene that encodes the low-threshold-activated Ca<sub>V</sub>3.1 T-type voltage-gated calcium channel subunit by injecting short-hairpin RNA (shRNA) into midline and intralaminar - nonspecific thalamus (MIT) and sensory - specific ventrobasal (VB) thalamic nuclei in wild-type (WT) mice. Control animals were injected with scrambled shRNA. To validate our silencing approach, we performed patch-clamp experiments in acute thalamic slices <i>ex vivo</i>. In injected animals we determined anesthetic endpoints such as hypnosis measured with loss of righting reflex (LORR) and immobilization measured with loss of withdrawal reflex (LOWR) <i>in vivo</i> after administration of a traditional volatile GA isoflurane. Effective Ca<sub>V</sub>3.1 channel knock-down was documented by greatly diminished amplitudes of T-currents and absence of rebound burst firing in our patch-clamp recordings from thalamic slices. We found that knocking down Ca<sub>V</sub>3.1 channels in MIT significantly decreased inhaled isoflurane concentration that is required to induce LORR, but it did not affect speed of anesthetic induction and the immobilizing effect of isoflurane. In contrast, knocking down the Ca<sub>V</sub>3.1 channel in the VB thalamus did not affect any of the measured anesthetic endpoints. Hence, we concluded that Ca<sub>V</sub>3.1 channels in nonspecific MIT thalamus have a preferential role in anesthetic hypnosis when compared to the sensory VB thalamus.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10553"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although substantial progress has been made in the last three decades towards our understanding of how general anesthetics (GAs) act at the molecular level, much less is known about how GAs cause loss of consciousness at the level of neuronal networks. The role of thalamus as an important brain region in anesthetic-induced hypnosis is relatively well established, but the specific roles of voltage-gated ion channels in different functional regions of the thalamus in anesthetic mechanisms are not well studied. To address this gap in knowledge, we selectively silenced the Cacna1g gene that encodes the low-threshold-activated CaV3.1 T-type voltage-gated calcium channel subunit by injecting short-hairpin RNA (shRNA) into midline and intralaminar - nonspecific thalamus (MIT) and sensory - specific ventrobasal (VB) thalamic nuclei in wild-type (WT) mice. Control animals were injected with scrambled shRNA. To validate our silencing approach, we performed patch-clamp experiments in acute thalamic slices ex vivo. In injected animals we determined anesthetic endpoints such as hypnosis measured with loss of righting reflex (LORR) and immobilization measured with loss of withdrawal reflex (LOWR) in vivo after administration of a traditional volatile GA isoflurane. Effective CaV3.1 channel knock-down was documented by greatly diminished amplitudes of T-currents and absence of rebound burst firing in our patch-clamp recordings from thalamic slices. We found that knocking down CaV3.1 channels in MIT significantly decreased inhaled isoflurane concentration that is required to induce LORR, but it did not affect speed of anesthetic induction and the immobilizing effect of isoflurane. In contrast, knocking down the CaV3.1 channel in the VB thalamus did not affect any of the measured anesthetic endpoints. Hence, we concluded that CaV3.1 channels in nonspecific MIT thalamus have a preferential role in anesthetic hypnosis when compared to the sensory VB thalamus.

在体内,丘脑CaV3.1电压门控钙通道的沉默证明了它们在麻醉介导催眠中的区域特异性作用。
尽管在过去的三十年里,我们对全身麻醉剂(GAs)在分子水平上如何起作用的理解取得了实质性的进展,但在神经网络水平上,我们对GAs是如何导致意识丧失的知之甚少。丘脑作为一个重要的脑区在麻醉诱导催眠中的作用已经相对确定,但丘脑不同功能区域的电压门控离子通道在麻醉机制中的具体作用尚未得到很好的研究。为了解决这一知识空白,我们通过将短发夹RNA (shRNA)注射到野生型(WT)小鼠的中线和层间非特异性丘脑(MIT)以及感觉特异性腹底核(VB),选择性地沉默了编码低阈值激活CaV3.1 t型电压门控钙通道亚基的Cacna1g基因。对照动物注射重组shRNA。为了验证我们的沉默方法,我们在急性丘脑离体切片中进行了膜片钳实验。在注射动物中,我们确定了麻醉终点,如在给药传统挥发性GA异氟醚后,用翻正反射丧失(LORR)测量的催眠和用戒断反射丧失(LOWR)测量的固定。在我们的丘脑切片膜片钳记录中,有效的CaV3.1通道敲除被证明是通过t电流的振幅大大减小和没有反弹爆发放电。我们发现敲除MIT CaV3.1通道可显著降低诱导LORR所需的吸入异氟烷浓度,但不影响麻醉诱导速度和异氟烷的固定化作用。相反,破坏VB丘脑的CaV3.1通道不会影响任何测量的麻醉终点。因此,我们得出结论,与感觉VB丘脑相比,非特异性MIT丘脑的CaV3.1通道在麻醉催眠中具有优先作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Biology and Medicine
Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
1 months
期刊介绍: Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population. Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信