Physics-driven deep learning methods and numerically intractable "bad" Jaulent-Miodek equation.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0264041
Jing-Jing Su, Gao-Liang Tao, Ran Li, Sheng Zhang
{"title":"Physics-driven deep learning methods and numerically intractable \"bad\" Jaulent-Miodek equation.","authors":"Jing-Jing Su, Gao-Liang Tao, Ran Li, Sheng Zhang","doi":"10.1063/5.0264041","DOIUrl":null,"url":null,"abstract":"<p><p>The \"bad\" Jaulent-Miodek (JM) equation serves to describe the motion of non-viscous shallow water wave packets in a flat-bottomed domain subject to shear forces. The \"bad\" JM equation exhibits poor properties, characterized by the linear instability of nonlinear waves on the zero-plane background, rendering it challenging to solve through traditional analytical and numerical methods. In this paper, two classic physics-driven deep learning approaches, namely, Physics-Informed Neural Networks (PINN) and Physics and Equality-Constrained Artificial Neural Networks (PECANN), are combined into a two-stage \"PINN+PECANN\" neural network to address the nonlinear wave evolution on the zero-plane background for the \"bad\" JM equation. The two-stage \"PINN+PECANN\" neural network method employs PINN in the first stage to pre-train the neural network, followed by fine-tuning of the network parameters using PECANN in the second stage. This approach not only correctly obtains solutions to the \"bad\" JM equation but also enhances computational efficiency. Specifically, we present the evolutionary behavior of nonlinear waves for the common initial values of the \"bad\" JM equation: Gauss wave packets, sech wave packets, and rational wave packets. Furthermore, the nonlinear interactions between two Gauss, sech, rational wave packets are provided. The results in this paper validate the advantages of physics-driven deep learning methods in solving equations with poor properties and open up a new pathway for obtaining unstable solutions of nonlinear equations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0264041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The "bad" Jaulent-Miodek (JM) equation serves to describe the motion of non-viscous shallow water wave packets in a flat-bottomed domain subject to shear forces. The "bad" JM equation exhibits poor properties, characterized by the linear instability of nonlinear waves on the zero-plane background, rendering it challenging to solve through traditional analytical and numerical methods. In this paper, two classic physics-driven deep learning approaches, namely, Physics-Informed Neural Networks (PINN) and Physics and Equality-Constrained Artificial Neural Networks (PECANN), are combined into a two-stage "PINN+PECANN" neural network to address the nonlinear wave evolution on the zero-plane background for the "bad" JM equation. The two-stage "PINN+PECANN" neural network method employs PINN in the first stage to pre-train the neural network, followed by fine-tuning of the network parameters using PECANN in the second stage. This approach not only correctly obtains solutions to the "bad" JM equation but also enhances computational efficiency. Specifically, we present the evolutionary behavior of nonlinear waves for the common initial values of the "bad" JM equation: Gauss wave packets, sech wave packets, and rational wave packets. Furthermore, the nonlinear interactions between two Gauss, sech, rational wave packets are provided. The results in this paper validate the advantages of physics-driven deep learning methods in solving equations with poor properties and open up a new pathway for obtaining unstable solutions of nonlinear equations.

物理驱动的深度学习方法和数值棘手的“坏”Jaulent-Miodek方程。
“bad”Jaulent-Miodek (JM)方程用于描述受剪切力作用的无粘性浅水波包在平底域中的运动。“bad”JM方程表现出较差的性质,非线性波在零面背景下具有线性不稳定性,难以通过传统的解析和数值方法求解。本文将两种经典的物理驱动深度学习方法,即物理信息神经网络(PINN)和物理与等式约束人工神经网络(PECANN)结合成一个两阶段的“PINN+PECANN”神经网络,以解决“坏”JM方程零平面背景下的非线性波演化问题。两阶段“PINN+PECANN”神经网络方法在第一阶段使用PINN对神经网络进行预训练,第二阶段使用PECANN对网络参数进行微调。该方法不仅能正确求得“坏”JM方程的解,而且提高了计算效率。具体地说,我们给出了“坏”JM方程的常见初始值:高斯波包、sech波包和有理波包的非线性波的演化行为。此外,还给出了两个高斯、sech、有理波包之间的非线性相互作用。本文的结果验证了物理驱动的深度学习方法在求解性质较差的方程方面的优势,为求解非线性方程的不稳定解开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信