Secretion of a VEGF-blocking scFv enhances CAR T-cell potency.

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Valentina M Supper, Hannah Donner, Filippo Birocchi, Alexandra Bratt, Giulia Escobar, Michael C Kann, Sangwoo Park, Grace Martin, Felix Korell, Hana Takei, Alexander Armstrong, Aiyana Parker, Diego Salas-Benito, Eli P Darnell, Stefanie R Bailey, Tamina Kienka, Merle Philips, Amanda Bouffard, Sadie Goncalves, Bryan D Choi, Nicholas J Haradhvala, Marcela V Maus, Mark B Leick
{"title":"Secretion of a VEGF-blocking scFv enhances CAR T-cell potency.","authors":"Valentina M Supper, Hannah Donner, Filippo Birocchi, Alexandra Bratt, Giulia Escobar, Michael C Kann, Sangwoo Park, Grace Martin, Felix Korell, Hana Takei, Alexander Armstrong, Aiyana Parker, Diego Salas-Benito, Eli P Darnell, Stefanie R Bailey, Tamina Kienka, Merle Philips, Amanda Bouffard, Sadie Goncalves, Bryan D Choi, Nicholas J Haradhvala, Marcela V Maus, Mark B Leick","doi":"10.1158/2326-6066.CIR-24-0876","DOIUrl":null,"url":null,"abstract":"<p><p>CAR T-cell therapy is an effective treatment strategy in B-cell malignancies, however, its efficacy in solid tumors remains limited. VEGF-targeted drugs are used as antitumor agents to target abnormal tumor vasculature, however, toxicities associated with systemic VEGF blockade limit their maximal therapeutic benefit. Increasing evidence suggests a role for VEGF in the immunosuppressive tumor microenvironment (TME), including through direct induction of T cell-effector dysfunction. Herein, we show that CAR T cells from patients treated with FDA-approved CAR T-cell products express members of the VEGF signaling pathway and this expression is correlated with patient non-response. To overcome putative VEGF-induced CAR T-cell dysfunction and deliver local VEGF blockade, we generated CAR T cells that secrete a VEGF-targeting scFv to block T-cell and tumor-derived VEGF within the TME. These CAR T cells potently inhibited VEGF signaling and angiogenesis in vitro, and exhibited enhanced activation, cytotoxicity, proliferation, and effector function across different antigen and solid tumor contexts. VEGF scFv-secreting CAR T cells showed improved tumor control in immunocompromised murine metastatic and orthotopic models of ovarian and lung cancer. These findings suggest that CAR T cell-secreted VEGF blockade augments CAR T-cell performance, inhibits VEGF without systemic toxicity, and warrants further development.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0876","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CAR T-cell therapy is an effective treatment strategy in B-cell malignancies, however, its efficacy in solid tumors remains limited. VEGF-targeted drugs are used as antitumor agents to target abnormal tumor vasculature, however, toxicities associated with systemic VEGF blockade limit their maximal therapeutic benefit. Increasing evidence suggests a role for VEGF in the immunosuppressive tumor microenvironment (TME), including through direct induction of T cell-effector dysfunction. Herein, we show that CAR T cells from patients treated with FDA-approved CAR T-cell products express members of the VEGF signaling pathway and this expression is correlated with patient non-response. To overcome putative VEGF-induced CAR T-cell dysfunction and deliver local VEGF blockade, we generated CAR T cells that secrete a VEGF-targeting scFv to block T-cell and tumor-derived VEGF within the TME. These CAR T cells potently inhibited VEGF signaling and angiogenesis in vitro, and exhibited enhanced activation, cytotoxicity, proliferation, and effector function across different antigen and solid tumor contexts. VEGF scFv-secreting CAR T cells showed improved tumor control in immunocompromised murine metastatic and orthotopic models of ovarian and lung cancer. These findings suggest that CAR T cell-secreted VEGF blockade augments CAR T-cell performance, inhibits VEGF without systemic toxicity, and warrants further development.

vegf阻断scFv的分泌增强了CAR - t细胞的效力。
CAR - t细胞疗法是b细胞恶性肿瘤的有效治疗策略,但其在实体瘤中的疗效仍然有限。VEGF靶向药物被用作靶向异常肿瘤血管的抗肿瘤药物,然而,与全身VEGF阻断相关的毒性限制了它们的最大治疗效益。越来越多的证据表明,VEGF在免疫抑制性肿瘤微环境(TME)中发挥作用,包括通过直接诱导T细胞效应功能障碍。本研究表明,接受fda批准的CAR - T细胞产品治疗的患者的CAR - T细胞表达VEGF信号通路的成员,这种表达与患者无反应相关。为了克服假定的VEGF诱导的CAR - T细胞功能障碍并提供局部VEGF阻断,我们生成了CAR - T细胞,该细胞分泌VEGF靶向scFv来阻断TME内的T细胞和肿瘤来源的VEGF。这些CAR - T细胞在体外有效地抑制VEGF信号传导和血管生成,并在不同抗原和实体肿瘤背景下表现出增强的激活、细胞毒性、增殖和效应功能。分泌VEGF scfv的CAR - T细胞在免疫功能低下的小鼠转移性和原位卵巢癌和肺癌模型中显示出更好的肿瘤控制能力。这些发现表明,CAR - T细胞分泌的VEGF阻断增强了CAR - T细胞的性能,抑制了VEGF而没有全身毒性,值得进一步开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信