Maria S. M. L. Oliveira, Raiza P. S. Lucena, Alberto G. Silva-Júnior, Fábio L. Melo, Beatriz M. Silva, Elainne C. S. Gomes, César A. S. Andrade, Maria D. L. Oliveira
{"title":"A simple electrochemical genosensor based on polythiophene acetic acid film for detection of Schistosoma mansoni","authors":"Maria S. M. L. Oliveira, Raiza P. S. Lucena, Alberto G. Silva-Júnior, Fábio L. Melo, Beatriz M. Silva, Elainne C. S. Gomes, César A. S. Andrade, Maria D. L. Oliveira","doi":"10.1002/btpr.70048","DOIUrl":null,"url":null,"abstract":"<p><i>Schistosoma mansoni</i> infection and other neglected diseases pose significant challenges in diagnosis and treatment, particularly in resource-constrained regions. Despite being useful, traditional techniques lack sensitivity, offering frequent false-positive results, highlighting the emergence of innovative tools such as genosensors as a promising solution to this dilemma. In this work, we developed a simple electrochemical biosensor platform based on electropolymerized films of polythiophene acetic acid (PTAA) and a specific DNA probe for the detection of <i>S. mansoni</i>. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and atomic force microscopy (AFM) were used to assess the assembly process of the genosensor, as well as to evaluate biodetection assays. The developed biosensor was found to be effective in detecting the target analyte in pure and complex samples such as cerebrospinal fluid, urine, and plasma from infected patients at different concentrations. CV and EIS were extremely useful in the evaluation of the detection process based on the electron kinetics and charge transfer resistance (R<sub>CT</sub>) in the interface of the biosensor, where the hybridization with the target single-stranded <i>S. mansoni</i> DNA resulted in the variation of these parameters. The genosensor exhibited high sensitivity and selectivity, with a limit of detection of 0.451 pg.μL<sup>−1</sup>. As genosensors continue to evolve, they promise to revolutionize the field of neglected disease management, providing hope for improved healthcare outcomes worldwide.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"41 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Schistosoma mansoni infection and other neglected diseases pose significant challenges in diagnosis and treatment, particularly in resource-constrained regions. Despite being useful, traditional techniques lack sensitivity, offering frequent false-positive results, highlighting the emergence of innovative tools such as genosensors as a promising solution to this dilemma. In this work, we developed a simple electrochemical biosensor platform based on electropolymerized films of polythiophene acetic acid (PTAA) and a specific DNA probe for the detection of S. mansoni. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and atomic force microscopy (AFM) were used to assess the assembly process of the genosensor, as well as to evaluate biodetection assays. The developed biosensor was found to be effective in detecting the target analyte in pure and complex samples such as cerebrospinal fluid, urine, and plasma from infected patients at different concentrations. CV and EIS were extremely useful in the evaluation of the detection process based on the electron kinetics and charge transfer resistance (RCT) in the interface of the biosensor, where the hybridization with the target single-stranded S. mansoni DNA resulted in the variation of these parameters. The genosensor exhibited high sensitivity and selectivity, with a limit of detection of 0.451 pg.μL−1. As genosensors continue to evolve, they promise to revolutionize the field of neglected disease management, providing hope for improved healthcare outcomes worldwide.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.