Robert B Hamanaka, Kun Woo D Shin, M Volkan Atalay, Rengul Cetin-Atalay, Hardik Shah, Jennifer C Houpy Szafran, Parker S Woods, Angelo Y Meliton, Obada R Shamaa, Yufeng Tian, Takugo Cho, Gökhan M Mutlu
{"title":"Arginine promotes the activation of human lung fibroblasts independent of its metabolism.","authors":"Robert B Hamanaka, Kun Woo D Shin, M Volkan Atalay, Rengul Cetin-Atalay, Hardik Shah, Jennifer C Houpy Szafran, Parker S Woods, Angelo Y Meliton, Obada R Shamaa, Yufeng Tian, Takugo Cho, Gökhan M Mutlu","doi":"10.1042/BCJ20253033","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to transforming growth factor-β (TGF-β)-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we examined the role and regulation of arginine metabolism in lung fibroblasts activated with TGF-β. We found that TGF-β increases the expression of arginine biosynthetic and catabolic enzymes in lung fibroblasts. Surprisingly, using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Despite this, arginine remained crucial for TGF-β-induced expression of collagen and α-smooth muscle actin. We found that arginine limitation leads to the activation of general control nonderepressible 2 (GCN2), while inhibiting TGF-β-induced mechanistic target of rapamycin complex 1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an argininosuccinate synthase-dependent manner. Our findings suggest that the major role of arginine in lung fibroblasts is for charging of arginyl-tRNAs and promotion of signaling events which are required for fibroblast activation.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20253033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to transforming growth factor-β (TGF-β)-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we examined the role and regulation of arginine metabolism in lung fibroblasts activated with TGF-β. We found that TGF-β increases the expression of arginine biosynthetic and catabolic enzymes in lung fibroblasts. Surprisingly, using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Despite this, arginine remained crucial for TGF-β-induced expression of collagen and α-smooth muscle actin. We found that arginine limitation leads to the activation of general control nonderepressible 2 (GCN2), while inhibiting TGF-β-induced mechanistic target of rapamycin complex 1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an argininosuccinate synthase-dependent manner. Our findings suggest that the major role of arginine in lung fibroblasts is for charging of arginyl-tRNAs and promotion of signaling events which are required for fibroblast activation.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling