{"title":"Recombinase Polymerase Amplification (RPA)-ELISA as an Isothermal Molecular POCT Method for Bacterial Respiratory Infection Diagnosis.","authors":"Reza Azizian, Erfaneh Jafari, Babak Pourakabri, Setareh Mamishi, Reihaneh Hosseinpour Sadeghi, Maryam Sotoudeh Anvari","doi":"10.18502/ajmb.v17i2.18562","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute Respiratory Infections (ARIs) are a leading cause of childhood mortality worldwide, especially in African and Southeast Asian countries. Point of Care Test (POCT) techniques provide faster diagnoses compared to conventional or real-time PCR methods. Recombinase Polymerase Amplification (RPA) offers rapid on-site detection of these infections. Coupling RPA with Enzyme-Linked Immunosorbent Assay (ELISA) (RPA-ELISA) creates a cost-effective alternative, ideal for clinical applications. This study evaluates RPA-ELISA as a rapid diagnostic tool for bacterial respiratory infections.</p><p><strong>Methods: </strong>From 11 August 2022 to 9 February 2023, respiratory samples were collected and processed using culture methods, biochemical tests, real-time PCR, and RPA assays. The RPA reactions were conducted at 39<i>°C</i> for 30 <i>min</i>, and ELISA was used for detection. Statistical analyses focused on sensitivity, specificity, Positive Predictive Values (PPV), and Negative Predictive Values (NPV).</p><p><strong>Results: </strong>Forty-two respiratory samples, were collected in this period of which 10 samples showed no growth, and 32 tested positive. Among these positive samples, 15 isolates (35.7%) were identified as <i>Klebsiella pneumoniae</i> (<i>K. pneumoniae</i>), 14 isolates (33.3%) as <i>Streptococcus pneumoniae</i> (<i>S. pneumoniae</i>), and 3 isolates (7.1%) as <i>Moraxella catarrhalis</i> (<i>M. catarrhalis</i>). RPA-ELISA demonstrated 100% sensitivity for all pathogens, comparable to or better than RT-PCR, but had slightly lower specificity and PPV. RT-PCR achieved 100% specificity and PPV for all pathogens, indicating higher accuracy; yet, RPA-ELISA's sensitivity points to its effectiveness as a rapid screening tool.</p><p><strong>Conclusion: </strong>RPA-ELISA is significantly faster than real-time PCR and culture methods. Its ease of use makes it suitable for on-site diagnoses in resource-limited environments. Limitations include a small sample size for certain bacteria and the necessity for further validation in varied clinical contexts.</p>","PeriodicalId":8669,"journal":{"name":"Avicenna journal of medical biotechnology","volume":"17 2","pages":"114-121"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna journal of medical biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ajmb.v17i2.18562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute Respiratory Infections (ARIs) are a leading cause of childhood mortality worldwide, especially in African and Southeast Asian countries. Point of Care Test (POCT) techniques provide faster diagnoses compared to conventional or real-time PCR methods. Recombinase Polymerase Amplification (RPA) offers rapid on-site detection of these infections. Coupling RPA with Enzyme-Linked Immunosorbent Assay (ELISA) (RPA-ELISA) creates a cost-effective alternative, ideal for clinical applications. This study evaluates RPA-ELISA as a rapid diagnostic tool for bacterial respiratory infections.
Methods: From 11 August 2022 to 9 February 2023, respiratory samples were collected and processed using culture methods, biochemical tests, real-time PCR, and RPA assays. The RPA reactions were conducted at 39°C for 30 min, and ELISA was used for detection. Statistical analyses focused on sensitivity, specificity, Positive Predictive Values (PPV), and Negative Predictive Values (NPV).
Results: Forty-two respiratory samples, were collected in this period of which 10 samples showed no growth, and 32 tested positive. Among these positive samples, 15 isolates (35.7%) were identified as Klebsiella pneumoniae (K. pneumoniae), 14 isolates (33.3%) as Streptococcus pneumoniae (S. pneumoniae), and 3 isolates (7.1%) as Moraxella catarrhalis (M. catarrhalis). RPA-ELISA demonstrated 100% sensitivity for all pathogens, comparable to or better than RT-PCR, but had slightly lower specificity and PPV. RT-PCR achieved 100% specificity and PPV for all pathogens, indicating higher accuracy; yet, RPA-ELISA's sensitivity points to its effectiveness as a rapid screening tool.
Conclusion: RPA-ELISA is significantly faster than real-time PCR and culture methods. Its ease of use makes it suitable for on-site diagnoses in resource-limited environments. Limitations include a small sample size for certain bacteria and the necessity for further validation in varied clinical contexts.