SCNet: A Dual-Branch Network for Strong Noisy Image Denoising Based on Swin Transformer and ConvNeXt

IF 1.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Chuchao Lin, Changjun Zou, Hangbin Xu
{"title":"SCNet: A Dual-Branch Network for Strong Noisy Image Denoising Based on Swin Transformer and ConvNeXt","authors":"Chuchao Lin,&nbsp;Changjun Zou,&nbsp;Hangbin Xu","doi":"10.1002/cav.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Image denoising plays a vital role in restoring high-quality images from noisy inputs and directly impacts downstream vision tasks. Traditional methods often fail under strong noise, causing detail loss or excessive smoothing. While recent Convolutional Neural Networks-based and Transformer-based models have shown progress, they struggle to jointly capture global structure and preserve local details. To address this, we propose SCNet, a dual-branch fusion network tailored for strong-noise denoising. It combines a Swin Transformer branch for global context modeling and a ConvNeXt branch for fine-grained local feature extraction. Their outputs are adaptively merged via a Feature Fusion Block using joint spatial and channel attention, ensuring semantic consistency and texture fidelity. A multi-scale upsampling module and the Charbonnier loss further improve structural accuracy and visual quality. Extensive experiments on four benchmark datasets show that SCNet outperforms state-of-the-art methods, especially under severe noise, and proves effective in real-world tasks such as mural image restoration.</p>\n </div>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"36 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.70030","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Image denoising plays a vital role in restoring high-quality images from noisy inputs and directly impacts downstream vision tasks. Traditional methods often fail under strong noise, causing detail loss or excessive smoothing. While recent Convolutional Neural Networks-based and Transformer-based models have shown progress, they struggle to jointly capture global structure and preserve local details. To address this, we propose SCNet, a dual-branch fusion network tailored for strong-noise denoising. It combines a Swin Transformer branch for global context modeling and a ConvNeXt branch for fine-grained local feature extraction. Their outputs are adaptively merged via a Feature Fusion Block using joint spatial and channel attention, ensuring semantic consistency and texture fidelity. A multi-scale upsampling module and the Charbonnier loss further improve structural accuracy and visual quality. Extensive experiments on four benchmark datasets show that SCNet outperforms state-of-the-art methods, especially under severe noise, and proves effective in real-world tasks such as mural image restoration.

Abstract Image

基于Swin变压器和ConvNeXt的双支路强噪声图像去噪网络
图像去噪在从噪声输入恢复高质量图像中起着至关重要的作用,并直接影响下游的视觉任务。传统的方法往往在强噪声下失效,造成细节丢失或过度平滑。虽然最近基于卷积神经网络和基于transformer的模型取得了进展,但它们很难同时捕获全局结构并保留局部细节。为了解决这个问题,我们提出了SCNet,一种专为强噪声去噪而设计的双分支融合网络。它结合了用于全局上下文建模的Swin Transformer分支和用于细粒度局部特征提取的ConvNeXt分支。它们的输出通过使用联合空间和通道关注的特征融合块自适应合并,确保语义一致性和纹理保真度。多尺度上采样模块和Charbonnier损失进一步提高了结构精度和视觉质量。在四个基准数据集上进行的大量实验表明,SCNet优于最先进的方法,特别是在严重噪声下,并且在壁画图像恢复等现实任务中被证明是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Animation and Virtual Worlds
Computer Animation and Virtual Worlds 工程技术-计算机:软件工程
CiteScore
2.20
自引率
0.00%
发文量
90
审稿时长
6-12 weeks
期刊介绍: With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信