V.S.M. Pereira , B. Radiguet , E. Oñorbe , A. Ulbricht , D. Sharma , A. Etienne , M.A.L. Laot , Sz. Szávai , O. Martin , M. Kolluri
{"title":"Assessment of Ni and Mn effect on the irradiation hardening behavior of VVER-1000 model steels exposed to high fluences in the high flux reactor","authors":"V.S.M. Pereira , B. Radiguet , E. Oñorbe , A. Ulbricht , D. Sharma , A. Etienne , M.A.L. Laot , Sz. Szávai , O. Martin , M. Kolluri","doi":"10.1016/j.jnucmat.2025.155932","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, we aim at providing more data and insight related to the influence of Ni and Mn contents on the degree of irradiation hardening of Light Water Reactor RPV steels. A total of 20 model steels and realistic welds based on VVER-1000 and PWR RPVs compositions were irradiated at high flux and to high fluences in the LYRA-10 experiment, conducted in the High Flux Reactor, Petten. Among them, eight VVER-1000 model steels with 0.1 wt % Cu and systematically varied Mn and Ni contents were submitted to tensile and Vickers hardness testing for evaluation of their degree of hardening, and were characterized in detail, using Atom Probe Tomography, Transmission Electron Microscopy, Small Angle Neutron Scattering and Positron Annihilation Spectroscopy. The mechanical testing results show the clear increase in degree of irradiation hardening with the Mn and Ni contents, in particular for steels containing 1.4 wt % Mn. Microstructural observations show direct correlation between increase in yield strength and the formation of Mn-Ni-Si solute clusters. Calculations done using classic and multiscale models confirm that the solute clusters are the main hardening features present in the irradiated RPV model steels. Furthermore, TEM and PAS results suggest that dislocation loops have a more significant role on the formation of solute clusters than on irradiation hardening of the group of materials investigated.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"615 ","pages":"Article 155932"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525003265","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, we aim at providing more data and insight related to the influence of Ni and Mn contents on the degree of irradiation hardening of Light Water Reactor RPV steels. A total of 20 model steels and realistic welds based on VVER-1000 and PWR RPVs compositions were irradiated at high flux and to high fluences in the LYRA-10 experiment, conducted in the High Flux Reactor, Petten. Among them, eight VVER-1000 model steels with 0.1 wt % Cu and systematically varied Mn and Ni contents were submitted to tensile and Vickers hardness testing for evaluation of their degree of hardening, and were characterized in detail, using Atom Probe Tomography, Transmission Electron Microscopy, Small Angle Neutron Scattering and Positron Annihilation Spectroscopy. The mechanical testing results show the clear increase in degree of irradiation hardening with the Mn and Ni contents, in particular for steels containing 1.4 wt % Mn. Microstructural observations show direct correlation between increase in yield strength and the formation of Mn-Ni-Si solute clusters. Calculations done using classic and multiscale models confirm that the solute clusters are the main hardening features present in the irradiated RPV model steels. Furthermore, TEM and PAS results suggest that dislocation loops have a more significant role on the formation of solute clusters than on irradiation hardening of the group of materials investigated.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.