Teng Sun , Guangxu Zhu , Xiaofan Li , Jiancun Fan , Minghua Xia
{"title":"Low-complexity hybrid beamforming for multi-cell mmWave massive MIMO: A primitive Kronecker decomposition approach","authors":"Teng Sun , Guangxu Zhu , Xiaofan Li , Jiancun Fan , Minghua Xia","doi":"10.1016/j.sigpro.2025.110102","DOIUrl":null,"url":null,"abstract":"<div><div>To circumvent the high path loss of mmWave propagation and reduce the hardware cost of massive multiple-input multiple-output antenna systems, full-dimensional hybrid beamforming is critical in 5G and beyond wireless communications. Concerning an uplink multi-cell system with a large-scale uniform planar antenna array, this paper designs an efficient hybrid beamformer using primitive Kronecker decomposition and dynamic factor allocation, where the analog beamformer applies to null the inter-cell interference and simultaneously enhances the desired signals. In contrast, the digital beamformer mitigates the intra-cell interference using the minimum mean square error (MMSE) criterion. Then, due to the low accuracy of phase shifters inherent in the analog beamformer, a low-complexity hybrid beamformer is developed to slow its adjustment speed. Next, an optimality analysis from a subspace perspective is performed, and a sufficient condition for optimal antenna configuration is established. Finally, simulation results demonstrate that the achievable sum rate of the proposed beamformer approaches that of the optimal pure digital MMSE scheme, yet with much lower computational complexity and hardware cost.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110102"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425002166","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To circumvent the high path loss of mmWave propagation and reduce the hardware cost of massive multiple-input multiple-output antenna systems, full-dimensional hybrid beamforming is critical in 5G and beyond wireless communications. Concerning an uplink multi-cell system with a large-scale uniform planar antenna array, this paper designs an efficient hybrid beamformer using primitive Kronecker decomposition and dynamic factor allocation, where the analog beamformer applies to null the inter-cell interference and simultaneously enhances the desired signals. In contrast, the digital beamformer mitigates the intra-cell interference using the minimum mean square error (MMSE) criterion. Then, due to the low accuracy of phase shifters inherent in the analog beamformer, a low-complexity hybrid beamformer is developed to slow its adjustment speed. Next, an optimality analysis from a subspace perspective is performed, and a sufficient condition for optimal antenna configuration is established. Finally, simulation results demonstrate that the achievable sum rate of the proposed beamformer approaches that of the optimal pure digital MMSE scheme, yet with much lower computational complexity and hardware cost.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.