{"title":"Small area prediction of counts under machine learning-type mixed models","authors":"Nicolas Frink, Timo Schmid","doi":"10.1016/j.csda.2025.108218","DOIUrl":null,"url":null,"abstract":"<div><div>Small area estimation methods are proposed that use generalized tree-based machine learning techniques to improve the estimation of disaggregated means in small areas using discrete survey data. Specifically, two existing approaches based on random forests - the Generalized Mixed Effects Random Forest (GMERF) and a Mixed Effects Random Forest (MERF) - are extended to accommodate count outcomes, addressing key challenges such as overdispersion. Additionally, three bootstrap methodologies designed to assess the reliability of point estimators for area-level means are evaluated. The numerical analysis shows that the MERF, which does not assume a Poisson distribution to model the mean behavior of count data, excels in scenarios of severe overdispersion. Conversely, the GMERF performs best under conditions where Poisson distribution assumptions are moderately met. In a case study using real-world data from the state of Guerrero, Mexico, the proposed methods effectively estimate area-level means while capturing the uncertainty inherent in overdispersed count data. These findings highlight their practical applicability for small area estimation.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108218"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000945","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Small area estimation methods are proposed that use generalized tree-based machine learning techniques to improve the estimation of disaggregated means in small areas using discrete survey data. Specifically, two existing approaches based on random forests - the Generalized Mixed Effects Random Forest (GMERF) and a Mixed Effects Random Forest (MERF) - are extended to accommodate count outcomes, addressing key challenges such as overdispersion. Additionally, three bootstrap methodologies designed to assess the reliability of point estimators for area-level means are evaluated. The numerical analysis shows that the MERF, which does not assume a Poisson distribution to model the mean behavior of count data, excels in scenarios of severe overdispersion. Conversely, the GMERF performs best under conditions where Poisson distribution assumptions are moderately met. In a case study using real-world data from the state of Guerrero, Mexico, the proposed methods effectively estimate area-level means while capturing the uncertainty inherent in overdispersed count data. These findings highlight their practical applicability for small area estimation.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]