{"title":"The power of the Binary Value Principle","authors":"Yaroslav Alekseev , Edward A. Hirsch","doi":"10.1016/j.apal.2025.103614","DOIUrl":null,"url":null,"abstract":"<div><div>The (extended) Binary Value Principle (<span><math><mi>eBVP</mi></math></span>, the equation <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>−</mo><mi>k</mi></math></span> for <span><math><mi>k</mi><mo>></mo><mn>0</mn></math></span> and Boolean variables <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) has received a lot of attention recently, several lower bounds have been proved for it <span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[11]</span></span>. Also it has been shown <span><span>[1]</span></span> that the probabilistically verifiable Ideal Proof System (<span><math><mi>IPS</mi></math></span>) <span><span>[8]</span></span> together with <span><math><mi>eBVP</mi></math></span> polynomially simulates a similar semialgebraic proof system. In this paper we consider Polynomial Calculus with an algebraic version of Tseitin's extension rule (<span><math><mrow><mi>Ext</mi></mrow><mtext>-</mtext><mrow><mi>PC</mi></mrow></math></span>) that introduces a new variable for any polynomial. Contrary to <span><math><mi>IPS</mi></math></span>, this is a Cook–Reckhow proof system. We show that in this context <span><math><mi>eBVP</mi></math></span> still allows to simulate similar semialgebraic systems. We also prove that it allows to simulate the Square Root Rule <span><span>[6]</span></span>, which is in sharp contrast with the result of <span><span>[2]</span></span> that shows an exponential lower bound on the size of <span><math><mrow><mi>Ext</mi></mrow><mtext>-</mtext><mrow><mi>PC</mi></mrow></math></span> derivations of the Binary Value Principle from its square. On the other hand, we demonstrate that <span><math><mi>eBVP</mi></math></span> probably does not help in proving exponential lower bounds for Boolean formulas: we show that an <span><math><mrow><mi>Ext</mi></mrow><mtext>-</mtext><mrow><mi>PC</mi></mrow></math></span> (even with the Square Root Rule) derivation of any unsatisfiable Boolean formula in CNF from <span><math><mi>eBVP</mi></math></span> must be of exponential size.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 9","pages":"Article 103614"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000636","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
The (extended) Binary Value Principle (, the equation for and Boolean variables ) has received a lot of attention recently, several lower bounds have been proved for it [1], [2], [11]. Also it has been shown [1] that the probabilistically verifiable Ideal Proof System () [8] together with polynomially simulates a similar semialgebraic proof system. In this paper we consider Polynomial Calculus with an algebraic version of Tseitin's extension rule () that introduces a new variable for any polynomial. Contrary to , this is a Cook–Reckhow proof system. We show that in this context still allows to simulate similar semialgebraic systems. We also prove that it allows to simulate the Square Root Rule [6], which is in sharp contrast with the result of [2] that shows an exponential lower bound on the size of derivations of the Binary Value Principle from its square. On the other hand, we demonstrate that probably does not help in proving exponential lower bounds for Boolean formulas: we show that an (even with the Square Root Rule) derivation of any unsatisfiable Boolean formula in CNF from must be of exponential size.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.