Khadija Meghraoui , Teeradaj Racharak , Kenza Ait El Kadi , Saloua Bensiali , Imane Sebari
{"title":"A new integrated neurosymbolic approach for crop-yield prediction using environmental data and satellite imagery at field scale","authors":"Khadija Meghraoui , Teeradaj Racharak , Kenza Ait El Kadi , Saloua Bensiali , Imane Sebari","doi":"10.1016/j.aiig.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Crop-yield is a crucial metric in agriculture, essential for effective sector management and improving the overall production process. This indicator is heavily influenced by numerous environmental factors, particularly those related to soil and climate, which present a challenging task due to the complex interactions involved. In this paper, we introduce a novel integrated neurosymbolic framework that combines knowledge-based approaches with sensor data for crop-yield prediction. This framework merges predictions from vectors generated by modeling environmental factors using a newly developed ontology focused on key elements and evaluates this ontology using quantitative methods, specifically representation learning techniques, along with predictions derived from remote sensing imagery. We tested our proposed methodology on a public dataset centered on corn, aiming to predict crop-yield. Our developed smart model achieved promising results in terms of crop-yield prediction, with a root mean squared error (RMSE) of 1.72, outperforming the baseline models. The ontology-based approach achieved an RMSE of 1.73, while the remote sensing-based method yielded an RMSE of 1.77. This confirms the superior performance of our proposed approach over those using single modalities. This integrated neurosymbolic approach demonstrates that the fusion of statistical and symbolic artificial intelligence (AI) represents a significant advancement in agricultural applications. It is particularly effective for crop-yield prediction at the field scale, thus facilitating more informed decision-making in advanced agricultural practices. Additionally, it is acknowledged that results might be further improved by incorporating more detailed ontological knowledge and testing the model with higher-resolution imagery to enhance prediction accuracy.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100125"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Crop-yield is a crucial metric in agriculture, essential for effective sector management and improving the overall production process. This indicator is heavily influenced by numerous environmental factors, particularly those related to soil and climate, which present a challenging task due to the complex interactions involved. In this paper, we introduce a novel integrated neurosymbolic framework that combines knowledge-based approaches with sensor data for crop-yield prediction. This framework merges predictions from vectors generated by modeling environmental factors using a newly developed ontology focused on key elements and evaluates this ontology using quantitative methods, specifically representation learning techniques, along with predictions derived from remote sensing imagery. We tested our proposed methodology on a public dataset centered on corn, aiming to predict crop-yield. Our developed smart model achieved promising results in terms of crop-yield prediction, with a root mean squared error (RMSE) of 1.72, outperforming the baseline models. The ontology-based approach achieved an RMSE of 1.73, while the remote sensing-based method yielded an RMSE of 1.77. This confirms the superior performance of our proposed approach over those using single modalities. This integrated neurosymbolic approach demonstrates that the fusion of statistical and symbolic artificial intelligence (AI) represents a significant advancement in agricultural applications. It is particularly effective for crop-yield prediction at the field scale, thus facilitating more informed decision-making in advanced agricultural practices. Additionally, it is acknowledged that results might be further improved by incorporating more detailed ontological knowledge and testing the model with higher-resolution imagery to enhance prediction accuracy.