Advanced risk signature analysis of inflammation markers in predicting prostate cancer using the Swedish Apolipoprotein-related MOrtality RISk (AMORIS) cohort

G. George , M. Rowley , A.C.C. Coolen , A. Santa Olalla , N. Hammar , M. Feychting , S.N. Karagiannis , D. Enting , M. Van Hemelrijck
{"title":"Advanced risk signature analysis of inflammation markers in predicting prostate cancer using the Swedish Apolipoprotein-related MOrtality RISk (AMORIS) cohort","authors":"G. George ,&nbsp;M. Rowley ,&nbsp;A.C.C. Coolen ,&nbsp;A. Santa Olalla ,&nbsp;N. Hammar ,&nbsp;M. Feychting ,&nbsp;S.N. Karagiannis ,&nbsp;D. Enting ,&nbsp;M. Van Hemelrijck","doi":"10.1016/j.esmorw.2025.100156","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Elevated post-diagnosis levels of C-reactive protein (CRP) and haptoglobin, and low albumin levels, have been associated with poor prostate cancer (PCa) prognosis. Advanced techniques are needed for biomarker-based cancer risk prediction. We evaluated PCa risk using Cox models and risk signature analysis in the Swedish Apolipoprotein-related MOrtality RISk (AMORIS) cohort.</div></div><div><h3>Materials and methods</h3><div>AMORIS includes biomarker data on &gt;800 000 individuals from 1985 to 1996 in primary care and occupational setting, linked to national health and population registers through 2020. PCa risk was analysed using Cox proportional hazard models for albumin, CRP, haptoglobin and white blood cells at the third time point, adjusting for age, socioeconomic status, education level, Charlson comorbidity index (CCI) and cancer history, and risk signature analysis with training and validation sets (preventing overfitting) including repeated biomarker measurements, covariate interactions and baseline factors. Sensitivity analysis categorised age and CCI.</div></div><div><h3>Results</h3><div>Cox model showed elevated CRP and CCI ≥2 significantly increased PCa risk, with age consistently predictive. Risk signatures confirmed age as the dominant risk factor (hazard ratio 1.15 per year, 95% confidence interval 1.13-1.18) and highlighted interaction effects: younger men with cancer history had higher PCa risk, while elevated CRP with high CCI amplified risk, demonstrating strong predictive accuracy (receiver operating characteristic area under the curve: 0.82; Harrell’s C: 0.72). Categorising age and CCI further refined risk stratification.</div></div><div><h3>Conclusion</h3><div>Although elevated CRP was associated with higher PCa risk, no clear associations were detected for other markers. Advanced risk analysis found age to be the sole predictor, indicating conventional methods may overestimate biomarker roles in PCa prediction.</div></div>","PeriodicalId":100491,"journal":{"name":"ESMO Real World Data and Digital Oncology","volume":"8 ","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Real World Data and Digital Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949820125000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Elevated post-diagnosis levels of C-reactive protein (CRP) and haptoglobin, and low albumin levels, have been associated with poor prostate cancer (PCa) prognosis. Advanced techniques are needed for biomarker-based cancer risk prediction. We evaluated PCa risk using Cox models and risk signature analysis in the Swedish Apolipoprotein-related MOrtality RISk (AMORIS) cohort.

Materials and methods

AMORIS includes biomarker data on >800 000 individuals from 1985 to 1996 in primary care and occupational setting, linked to national health and population registers through 2020. PCa risk was analysed using Cox proportional hazard models for albumin, CRP, haptoglobin and white blood cells at the third time point, adjusting for age, socioeconomic status, education level, Charlson comorbidity index (CCI) and cancer history, and risk signature analysis with training and validation sets (preventing overfitting) including repeated biomarker measurements, covariate interactions and baseline factors. Sensitivity analysis categorised age and CCI.

Results

Cox model showed elevated CRP and CCI ≥2 significantly increased PCa risk, with age consistently predictive. Risk signatures confirmed age as the dominant risk factor (hazard ratio 1.15 per year, 95% confidence interval 1.13-1.18) and highlighted interaction effects: younger men with cancer history had higher PCa risk, while elevated CRP with high CCI amplified risk, demonstrating strong predictive accuracy (receiver operating characteristic area under the curve: 0.82; Harrell’s C: 0.72). Categorising age and CCI further refined risk stratification.

Conclusion

Although elevated CRP was associated with higher PCa risk, no clear associations were detected for other markers. Advanced risk analysis found age to be the sole predictor, indicating conventional methods may overestimate biomarker roles in PCa prediction.
使用瑞典载脂蛋白相关死亡风险(AMORIS)队列对预测前列腺癌的炎症标志物进行高级风险特征分析
诊断后c反应蛋白(CRP)和接触珠蛋白水平升高以及白蛋白水平低与前列腺癌(PCa)预后不良相关。基于生物标志物的癌症风险预测需要先进的技术。我们在瑞典载脂蛋白相关死亡风险(AMORIS)队列中使用Cox模型和风险特征分析评估PCa风险。材料和方法samoris包括1985年至1996年初级保健和职业环境中80万人的生物标志物数据,这些数据与截至2020年的国家卫生和人口登记相关联。使用白蛋白、CRP、触球蛋白和白细胞在第三时间点的Cox比例风险模型分析PCa风险,调整年龄、社会经济地位、教育水平、Charlson共病指数(CCI)和癌症史,并使用包括重复生物标志物测量、协变量相互作用和基线因素在内的训练和验证集(防止过拟合)进行风险签名分析。敏感性分析对年龄和CCI进行分类。结果scox模型显示,CRP升高和CCI≥2显著增加PCa风险,年龄预测一致。风险信号证实年龄是主要的危险因素(风险比为1.15 /年,95%置信区间为1.13-1.18),并突出了相互作用效应:有癌症病史的年轻男性患PCa的风险较高,而升高的CRP与高CCI放大了风险,显示出很强的预测准确性(曲线下的受试者工作特征面积:0.82;哈勒尔氏C值:0.72)。年龄和CCI的分类进一步细化了风险分层。结论虽然CRP升高与PCa风险升高相关,但其他指标未发现明显相关性。高级风险分析发现年龄是唯一的预测因子,表明传统方法可能高估了生物标志物在PCa预测中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信