{"title":"Millimeter-wave vehicular collaborative communication assisted by intelligent reflecting surface","authors":"Xiangrui Guan, Jianbin Xue, Han Zhang, Jialing Xu","doi":"10.1016/j.vehcom.2025.100940","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of the intelligent reflecting surface (IRS) with reconfigurable wireless propagation environment and the millimeter-wave (mmWave) with abundant bandwidth resources can play a great advantage over the rate and delay in vehicular communications. Considering the problem of non-line-of-sight (NLOS) communication between the requesting nodes (RNs) and the service nodes (SNs) in the mmWave vehicular system in this paper, we propose an IRS-assisted multi-hop vehicle-to-vehicle (V2V) cooperative communication method to realize low-delay vehicular communication. Aiming to minimize the communication delay of RNs, an optimization problem is formulated by optimizing the link selection and reflection coefficient matrix of IRS. To tackle the optimization problem, an alternate optimization algorithm is proposed to decompose the original optimization problem into two subproblems for iterative optimization. First, we establish a link selection mechanism based on link quality and vehicle distance and propose a link selection algorithm based on the evaluation function to select communication links for each RN. Then, in particular, we derive the closed-form expression based on successive convex approximation (SCA) techniques for updating the reflection coefficient matrix of IRS. The simulation results show that the IRS-assisted mmWave vehicular cooperative communication scheme proposed in this paper can effectively reduce the communication delay and improve the performance of the mmWave vehicular network.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"54 ","pages":"Article 100940"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000671","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of the intelligent reflecting surface (IRS) with reconfigurable wireless propagation environment and the millimeter-wave (mmWave) with abundant bandwidth resources can play a great advantage over the rate and delay in vehicular communications. Considering the problem of non-line-of-sight (NLOS) communication between the requesting nodes (RNs) and the service nodes (SNs) in the mmWave vehicular system in this paper, we propose an IRS-assisted multi-hop vehicle-to-vehicle (V2V) cooperative communication method to realize low-delay vehicular communication. Aiming to minimize the communication delay of RNs, an optimization problem is formulated by optimizing the link selection and reflection coefficient matrix of IRS. To tackle the optimization problem, an alternate optimization algorithm is proposed to decompose the original optimization problem into two subproblems for iterative optimization. First, we establish a link selection mechanism based on link quality and vehicle distance and propose a link selection algorithm based on the evaluation function to select communication links for each RN. Then, in particular, we derive the closed-form expression based on successive convex approximation (SCA) techniques for updating the reflection coefficient matrix of IRS. The simulation results show that the IRS-assisted mmWave vehicular cooperative communication scheme proposed in this paper can effectively reduce the communication delay and improve the performance of the mmWave vehicular network.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.