Excellent spin-filtering and giant tunneling magnetoresistance in a van der Waals magnetic tunnel junction based on full-Heusler alloys Co2FeX (X = Si/Al) and 2D vdW materials WSe2/MoS2

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Shagufta Parveen Asif Akhtar, Santashraya Prasad, Aminul Islam
{"title":"Excellent spin-filtering and giant tunneling magnetoresistance in a van der Waals magnetic tunnel junction based on full-Heusler alloys Co2FeX (X = Si/Al) and 2D vdW materials WSe2/MoS2","authors":"Shagufta Parveen Asif Akhtar,&nbsp;Santashraya Prasad,&nbsp;Aminul Islam","doi":"10.1016/j.physe.2025.116299","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate multiple spin-filter magnetic tunnel junctions (sf-MTJs) based on 2D van der Waals (vdW) materials. WSe<sub>2</sub>/MoS<sub>2</sub> acts as a spin-filter tunnel barrier (TB) sandwiched between full-Heusler alloys Co<sub>2</sub>FeX (X = Si/Al) contacts. We demonstrate tunneling magnetoresistance (TMR) that is drastically enhanced with increasing TB layer thickness, reaching a record of 11,761.23 % for the Co<sub>2</sub>FeAl/3L-MoS<sub>2</sub>/Co<sub>2</sub>FeAl configuration. By leveraging Density Functional Theory (DFT) simulations and the Non-Equilibrium Green's Function (NEGF) formalism, the magnetic properties of ferromagnetic materials (FM), spin orbit coupling (SOC) of 2D TB materials, tunneling magnetoresistance (TMR), and I-V characteristics of MTJs are thoroughly studied. This comprehensive modelling via electrode interface engineering and simulation framework provides crucial insights into spin injection mechanisms and the behaviour of 2D material systems in spintronic applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116299"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001298","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate multiple spin-filter magnetic tunnel junctions (sf-MTJs) based on 2D van der Waals (vdW) materials. WSe2/MoS2 acts as a spin-filter tunnel barrier (TB) sandwiched between full-Heusler alloys Co2FeX (X = Si/Al) contacts. We demonstrate tunneling magnetoresistance (TMR) that is drastically enhanced with increasing TB layer thickness, reaching a record of 11,761.23 % for the Co2FeAl/3L-MoS2/Co2FeAl configuration. By leveraging Density Functional Theory (DFT) simulations and the Non-Equilibrium Green's Function (NEGF) formalism, the magnetic properties of ferromagnetic materials (FM), spin orbit coupling (SOC) of 2D TB materials, tunneling magnetoresistance (TMR), and I-V characteristics of MTJs are thoroughly studied. This comprehensive modelling via electrode interface engineering and simulation framework provides crucial insights into spin injection mechanisms and the behaviour of 2D material systems in spintronic applications.
基于全heusler合金Co2FeX (X = Si/Al)和二维vdW材料WSe2/MoS2的范德华磁隧道结具有优异的自旋滤波和巨大的隧道磁电阻
我们研究了基于二维范德华(vdW)材料的多自旋滤波器磁隧道结(sf-MTJs)。WSe2/MoS2在全heusler合金Co2FeX (X = Si/Al)触点之间充当自旋过滤器隧道势垒(TB)。我们证明隧道磁电阻(TMR)随着TB层厚度的增加而急剧增强,在Co2FeAl/3L-MoS2/Co2FeAl结构中达到11,761.23%的记录。利用密度泛函理论(DFT)模拟和非平衡格林函数(NEGF)形式,深入研究了铁磁材料(FM)的磁性、二维TB材料的自旋轨道耦合(SOC)、隧穿磁阻(TMR)和mtj的I-V特性。这种通过电极界面工程和仿真框架进行的综合建模为自旋注入机制和自旋电子应用中二维材料系统的行为提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信