Hyperspectral imagery, LiDAR point clouds, and environmental DNA to assess land‐water linkage of biodiversity across aquatic functional feeding groups

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY
Heng Zhang, Carmen Meiller, Andreas Hueni, Rosetta C. Blackman, Felix Morsdorf, Isabelle S. Helfenstein, Michael E. Schaepman, Florian Altermatt
{"title":"Hyperspectral imagery, LiDAR point clouds, and environmental DNA to assess land‐water linkage of biodiversity across aquatic functional feeding groups","authors":"Heng Zhang, Carmen Meiller, Andreas Hueni, Rosetta C. Blackman, Felix Morsdorf, Isabelle S. Helfenstein, Michael E. Schaepman, Florian Altermatt","doi":"10.1002/rse2.70010","DOIUrl":null,"url":null,"abstract":"Different organismal functional feeding groups (FFGs) are key components of aquatic food webs and are important for sustaining ecosystem functioning in riverine ecosystems. Their distribution and diversity are tightly associated with the surrounding terrestrial landscape through land‐water linkages. Nevertheless, knowledge about the spatial extent and magnitude of these cross‐ecosystem linkages within major FFGs still remains unclear. Here, we conducted an airborne imaging spectroscopy campaign and a systematic environmental DNA (eDNA) field sampling of river water in a 740‐km<jats:sup>2</jats:sup> mountainous catchment, combined with light detection and ranging (LiDAR) point clouds, to obtain the spectral and morphological diversity of the terrestrial landscape and the diversity of major FFGs in rivers. We identified the scale of these linkages, ranging from a few hundred meters to more than 10 km, with collectors and filterers, shredders, and small invertebrate predators having local‐scale associations, while invertebrate‐eating fish, grazers, and scrapers have more landscape‐scale associations. Among all major FFGs, shredders, grazers, and scrapers in the streams had the strongest association with surrounding terrestrial vegetation. Our research reveals the reference spatial scales at which major FFGs are linked to the surrounding terrestrial landscape, providing spatially explicit evidence of the cross‐ecosystem linkages needed for conservation design and management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70010","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Different organismal functional feeding groups (FFGs) are key components of aquatic food webs and are important for sustaining ecosystem functioning in riverine ecosystems. Their distribution and diversity are tightly associated with the surrounding terrestrial landscape through land‐water linkages. Nevertheless, knowledge about the spatial extent and magnitude of these cross‐ecosystem linkages within major FFGs still remains unclear. Here, we conducted an airborne imaging spectroscopy campaign and a systematic environmental DNA (eDNA) field sampling of river water in a 740‐km2 mountainous catchment, combined with light detection and ranging (LiDAR) point clouds, to obtain the spectral and morphological diversity of the terrestrial landscape and the diversity of major FFGs in rivers. We identified the scale of these linkages, ranging from a few hundred meters to more than 10 km, with collectors and filterers, shredders, and small invertebrate predators having local‐scale associations, while invertebrate‐eating fish, grazers, and scrapers have more landscape‐scale associations. Among all major FFGs, shredders, grazers, and scrapers in the streams had the strongest association with surrounding terrestrial vegetation. Our research reveals the reference spatial scales at which major FFGs are linked to the surrounding terrestrial landscape, providing spatially explicit evidence of the cross‐ecosystem linkages needed for conservation design and management.
利用高光谱图像、激光雷达点云和环境DNA评估水生功能性摄食群体的陆地-水生物多样性联系
不同的有机功能摄食群(ffg)是水生食物网的关键组成部分,对维持河流生态系统的生态系统功能具有重要意义。它们的分布和多样性通过陆地与水的联系与周围的陆地景观密切相关。然而,关于主要ffg内这些跨生态系统联系的空间范围和程度的知识仍然不清楚。在这里,我们进行了航空成像光谱运动和系统的环境DNA (eDNA)现场采样,在740平方公里的山区集水区,结合光探测和测距(LiDAR)点云,以获得陆地景观的光谱和形态多样性以及河流中主要ffg的多样性。我们确定了这些联系的规模,从几百米到超过10公里,收集者和过滤器,碎纸机和小型无脊椎食肉动物具有局部规模的联系,而无脊椎食性鱼类,食草动物和刮刀动物具有更多的景观规模的联系。在所有主要ffg中,河流中的碎纸机、食草动物和刮削动物与周围陆生植被的相关性最强。我们的研究揭示了主要ffg与周围陆地景观联系的参考空间尺度,为保护设计和管理所需的跨生态系统联系提供了空间上明确的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信