Understanding the impact of covariates for trachoma prevalence prediction using geostatistical methods.

Misaki Sasanami, Ibrahim Almou, Adam Nouhou Diori, Ana Bakhtiari, Nassirou Beidou, Donal Bisanzio, Sarah Boyd, Clara R Burgert-Brucker, Abdou Amza, Katherine Gass, Boubacar Kadri, Fikreab Kebede, Michael P Masika, Nicholas P Olobio, Fikre Seife, Abdoul Salam Youssoufou Souley, Amsayaw Tefera, Amir B Kello, Anthony W Solomon, Emma M Harding-Esch, Emanuele Giorgi
{"title":"Understanding the impact of covariates for trachoma prevalence prediction using geostatistical methods.","authors":"Misaki Sasanami, Ibrahim Almou, Adam Nouhou Diori, Ana Bakhtiari, Nassirou Beidou, Donal Bisanzio, Sarah Boyd, Clara R Burgert-Brucker, Abdou Amza, Katherine Gass, Boubacar Kadri, Fikreab Kebede, Michael P Masika, Nicholas P Olobio, Fikre Seife, Abdoul Salam Youssoufou Souley, Amsayaw Tefera, Amir B Kello, Anthony W Solomon, Emma M Harding-Esch, Emanuele Giorgi","doi":"10.1186/s44263-025-00161-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Model-based geostatistics (MBG) is increasingly used for estimating the prevalence of neglected tropical diseases, including trachoma, in low- and middle-income countries. We sought to investigate the impact of spatially referenced covariates to improve spatial predictions for trachomatous inflammation-follicular (TF) prevalence generated by MBG. To this end, we assessed the ability of spatial covariates to explain the spatial variation of TF prevalence and to reduce uncertainty in the assessment of TF elimination for pre-defined evaluation units (EUs).</p><p><strong>Methods: </strong>We used data from Tropical Data-supported population-based trachoma prevalence surveys conducted in EUs in Ethiopia, Malawi, Niger, and Nigeria between 2016 and 2023. We then compared two models: a model that used only age, a variable required for the standardization of prevalence as used in the routine, standard prevalence estimation, and a model that included spatial covariates in addition to age. For each fitted model, we reported estimates of the parameters that quantify the strength of residual spatial correlation and 95% prediction intervals as the measure of uncertainty.</p><p><strong>Results: </strong>The strength of the association between covariates and TF prevalence varied within and across countries. For some EUs, spatially referenced covariates explained most of the spatial variation and thus allowed us to generate predictive inferences for TF prevalence with a substantially reduced uncertainty, compared with models without the spatial covariates. For example, the prediction interval for TF prevalence in the areas with the lowest TF prevalence in Nigeria narrowed substantially, from a width of 2.9 to 0.7. This reduction occurred as the inclusion of spatial covariates significantly decreased the variance of the spatial Gaussian process in the geostatistical model. In other cases, spatial covariates only led to minor gains, with slightly smaller prediction intervals for the EU-level TF prevalence or even a wider prediction interval.</p><p><strong>Conclusions: </strong>Although spatially referenced covariates could help reduce prediction uncertainty in some cases, the gain could be very minor, or uncertainty could even increase. When considering the routine, standardized use of MBG methods to support national trachoma programs worldwide, we recommend that spatial covariate use be avoided.</p>","PeriodicalId":519903,"journal":{"name":"BMC global and public health","volume":"3 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC global and public health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44263-025-00161-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Model-based geostatistics (MBG) is increasingly used for estimating the prevalence of neglected tropical diseases, including trachoma, in low- and middle-income countries. We sought to investigate the impact of spatially referenced covariates to improve spatial predictions for trachomatous inflammation-follicular (TF) prevalence generated by MBG. To this end, we assessed the ability of spatial covariates to explain the spatial variation of TF prevalence and to reduce uncertainty in the assessment of TF elimination for pre-defined evaluation units (EUs).

Methods: We used data from Tropical Data-supported population-based trachoma prevalence surveys conducted in EUs in Ethiopia, Malawi, Niger, and Nigeria between 2016 and 2023. We then compared two models: a model that used only age, a variable required for the standardization of prevalence as used in the routine, standard prevalence estimation, and a model that included spatial covariates in addition to age. For each fitted model, we reported estimates of the parameters that quantify the strength of residual spatial correlation and 95% prediction intervals as the measure of uncertainty.

Results: The strength of the association between covariates and TF prevalence varied within and across countries. For some EUs, spatially referenced covariates explained most of the spatial variation and thus allowed us to generate predictive inferences for TF prevalence with a substantially reduced uncertainty, compared with models without the spatial covariates. For example, the prediction interval for TF prevalence in the areas with the lowest TF prevalence in Nigeria narrowed substantially, from a width of 2.9 to 0.7. This reduction occurred as the inclusion of spatial covariates significantly decreased the variance of the spatial Gaussian process in the geostatistical model. In other cases, spatial covariates only led to minor gains, with slightly smaller prediction intervals for the EU-level TF prevalence or even a wider prediction interval.

Conclusions: Although spatially referenced covariates could help reduce prediction uncertainty in some cases, the gain could be very minor, or uncertainty could even increase. When considering the routine, standardized use of MBG methods to support national trachoma programs worldwide, we recommend that spatial covariate use be avoided.

了解用地质统计学方法预测沙眼患病率的协变量影响。
背景:基于模型的地质统计学(MBG)越来越多地用于估计低收入和中等收入国家被忽视的热带病(包括沙眼)的流行情况。我们试图研究空间参考协变量的影响,以改善由MBG产生的沙眼炎症-滤泡(TF)患病率的空间预测。为此,我们评估了空间协变量解释TF患病率的空间变化的能力,并减少了预定义评估单位(EUs)评估TF消除的不确定性。方法:我们使用的数据来自2016年至2023年间在埃塞俄比亚、马拉维、尼日尔和尼日利亚进行的基于人群的沙眼患病率调查。然后,我们比较了两种模型:一种模型只使用年龄,这是常规标准患病率估计中使用的患病率标准化所需的变量,另一种模型除了年龄外还包括空间协变量。对于每个拟合模型,我们报告了量化剩余空间相关性强度和95%预测区间作为不确定性度量的参数估计值。结果:协变量与TF患病率之间的关联强度在国家内部和国家之间有所不同。对于一些EUs,空间参考协变量解释了大部分的空间变异,因此,与没有空间协变量的模型相比,我们可以在大大降低不确定性的情况下对TF患病率进行预测推断。例如,在尼日利亚登革热流行率最低的地区,登革热流行率的预测区间从2.9大幅收窄至0.7。这种减少发生在空间协变量的包含显著降低了地统计模型中空间高斯过程的方差。在其他情况下,空间协变量仅导致微小的增益,对欧盟水平的TF患病率的预测区间略小,甚至更宽。结论:虽然空间参考协变量在某些情况下可以帮助减少预测的不确定性,但其增益可能非常小,甚至可能增加不确定性。当考虑常规的、标准化的使用MBG方法来支持世界范围内的国家沙眼项目时,我们建议避免使用空间协变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信