Systematic Exploration of Potential Toxicity Targets and Molecular Mechanisms of Emerging Short-Chain PFAS Substitutes: PFBA- and PFBS-Induced Hepatocellular Carcinoma Based on Toxicity Network Analysis, Machine Learning, and Biomimetic Calculations.

IF 2.8 4区 医学 Q3 TOXICOLOGY
Zirui Zhang, Jin Wang, Zhongyi Zhang, Qianrong Gan, Yunliang He, Donghui Chen, Yong Zhang, Mei Zhao
{"title":"Systematic Exploration of Potential Toxicity Targets and Molecular Mechanisms of Emerging Short-Chain PFAS Substitutes: PFBA- and PFBS-Induced Hepatocellular Carcinoma Based on Toxicity Network Analysis, Machine Learning, and Biomimetic Calculations.","authors":"Zirui Zhang, Jin Wang, Zhongyi Zhang, Qianrong Gan, Yunliang He, Donghui Chen, Yong Zhang, Mei Zhao","doi":"10.1002/jat.4818","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluorobutanoic acid (PFBA) and perfluorobutanesulfonic acid (PFBS) are short-chain alternatives to traditional perfluoroalkyl and polyfluoroalkyl substances (PFASs). Long-term exposure to these pollutants is closely associated with hepatocellular carcinoma (HCC). However, the toxic targets and mechanisms underlying PFBA- and PFBS-induced HCC remain unclear. To address this knowledge gap, this study employed a multifaceted approach encompassing network toxicology, molecular docking, and molecular dynamic simulation. Thirty-six core targets associated with PFBA- and PFBS-induced HCC were identified, and 12 key genes were initially screened through network toxicity analysis. Subsequently, based on the TCGA and ICGC datasets, three classical algorithms were applied to screen key genes: PPARG, ESR1, and ALB. Further exploration of the HCC-related dataset from the GEO database identified six critical genes: PPARG, ESR1, CD36, ABCA1, ACACA, and ALB. Survival analysis and ROC analysis based on the TCGA dataset revealed and validated the strong association between the expression levels of key genes (PPARG, ESR1, and ACACA). Single-gene GSEA showed that these three key genes may induce HCC through multiple biological pathways via interfering with the normal growth and development of hepatocytes and promoting inflammation and cell proliferation. Ultimately, molecular dynamics demonstrated the strong binding affinities between PFBA, PFBS, and the three protein receptors, with the best stability and flexibility of the interaction between PFBS and PPARG. These findings provide insights into the theoretical foundation for applying network toxicology, molecular docking, and molecular dynamic simulations in environmental pollutant research.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluorobutanoic acid (PFBA) and perfluorobutanesulfonic acid (PFBS) are short-chain alternatives to traditional perfluoroalkyl and polyfluoroalkyl substances (PFASs). Long-term exposure to these pollutants is closely associated with hepatocellular carcinoma (HCC). However, the toxic targets and mechanisms underlying PFBA- and PFBS-induced HCC remain unclear. To address this knowledge gap, this study employed a multifaceted approach encompassing network toxicology, molecular docking, and molecular dynamic simulation. Thirty-six core targets associated with PFBA- and PFBS-induced HCC were identified, and 12 key genes were initially screened through network toxicity analysis. Subsequently, based on the TCGA and ICGC datasets, three classical algorithms were applied to screen key genes: PPARG, ESR1, and ALB. Further exploration of the HCC-related dataset from the GEO database identified six critical genes: PPARG, ESR1, CD36, ABCA1, ACACA, and ALB. Survival analysis and ROC analysis based on the TCGA dataset revealed and validated the strong association between the expression levels of key genes (PPARG, ESR1, and ACACA). Single-gene GSEA showed that these three key genes may induce HCC through multiple biological pathways via interfering with the normal growth and development of hepatocytes and promoting inflammation and cell proliferation. Ultimately, molecular dynamics demonstrated the strong binding affinities between PFBA, PFBS, and the three protein receptors, with the best stability and flexibility of the interaction between PFBS and PPARG. These findings provide insights into the theoretical foundation for applying network toxicology, molecular docking, and molecular dynamic simulations in environmental pollutant research.

新出现的短链PFAS替代品的潜在毒性靶点和分子机制的系统探索:基于毒性网络分析,机器学习和仿生计算的PFBA和pfbs诱导的肝细胞癌
全氟丁酸(PFBA)和全氟丁烷磺酸(PFBS)是传统全氟烷基和多氟烷基物质(PFASs)的短链替代品。长期暴露于这些污染物与肝细胞癌(HCC)密切相关。然而,PFBA和pfbs诱导HCC的毒性靶点和机制尚不清楚。为了解决这一知识差距,本研究采用了多方面的方法,包括网络毒理学、分子对接和分子动力学模拟。确定了与PFBA和pfbs诱导的HCC相关的36个核心靶点,并通过网络毒性分析初步筛选了12个关键基因。随后,基于TCGA和ICGC数据集,应用三种经典算法筛选关键基因:PPARG、ESR1和ALB。对GEO数据库中hcc相关数据集的进一步探索确定了6个关键基因:PPARG、ESR1、CD36、ABCA1、ACACA和ALB。基于TCGA数据集的生存分析和ROC分析显示并验证了关键基因(PPARG、ESR1和ACACA)表达水平之间的强相关性。单基因GSEA表明,这三个关键基因可能通过干扰肝细胞正常生长发育、促进炎症和细胞增殖等多种生物学途径诱导HCC。最终,分子动力学证明了PFBA、PFBS和三种蛋白受体之间具有较强的结合亲和性,其中PFBS与ppar相互作用的稳定性和灵活性最好。这些发现为网络毒理学、分子对接、分子动力学模拟等在环境污染物研究中的应用提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信