Sarah N. Farrell , Anton Cozijnsen , Vanessa Mollard , Papireddy Kancharla , Rozalia A. Dodean , Jane X. Kelly , Geoffrey I. McFadden , Christopher D. Goodman
{"title":"Identifying antimalarials that disrupt malaria parasite transmission when fed to the mosquito","authors":"Sarah N. Farrell , Anton Cozijnsen , Vanessa Mollard , Papireddy Kancharla , Rozalia A. Dodean , Jane X. Kelly , Geoffrey I. McFadden , Christopher D. Goodman","doi":"10.1016/j.ijpara.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>A decade-long decline in malaria cases has plateaued, primarily due to parasite drug resistance and mosquito resistance to insecticides used in bed nets and indoor residual spraying. Here, we explore the innovative control strategy targeting <em>Plasmodium</em> with antimalarials during the mosquito stages. This strategy has the potential to reduce the risk of resistance emerging because a relatively small population of parasites within the mosquito is subject to selection. After validating mosquito feeding strategies, we screened a range of parasiticidal compounds by feeding them to mosquitoes already infected with mouse malaria (<em>P. berghei</em>). Three antimalarials showed activity against <em>P. berghei</em> in mosquitoes, apparently targeting specific stages of <em>P. berghei</em> development during transmission. Borrelidin, a threonyl-tRNA synthetase inhibitor, significantly reduced <em>P. berghei</em> sporozoite numbers. Azithromycin, an antibiotic targeting apicoplast protein synthesis, significantly lowered sporozoite infectivity in mice. T111, a next generation compound targeting the parasite electron transport chain, reduced sporozoite numbers in <em>P. berghei</em> at equivalent concentrations to the gold standard electron transport chain inhibitor, atovaquone. T111 also prevented sporozoite production in mosquitoes infected with human malaria, <em>P. falciparum,</em> even after very short exposure times. Encouragingly, T111 remained efficacious after being freeze-dried onto a substrate and later reconstituted with water, suggesting this compound would be effective in easy-to-distribute-and-deploy transmission control devices. Our findings suggest that several antimalarials can be used to target mosquito-stage parasites via sugar baits and limit malaria transmission. Importantly, mosquito feeding of antimalarials could vastly increase the range of potentially useful parasiticidal compounds to include those failing to meet the exacting standards required for human antimalarial drugs, potentially improving malaria control for minimal cost.</div></div>","PeriodicalId":13725,"journal":{"name":"International journal for parasitology","volume":"55 11","pages":"Pages 603-613"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal for parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020751925000967","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A decade-long decline in malaria cases has plateaued, primarily due to parasite drug resistance and mosquito resistance to insecticides used in bed nets and indoor residual spraying. Here, we explore the innovative control strategy targeting Plasmodium with antimalarials during the mosquito stages. This strategy has the potential to reduce the risk of resistance emerging because a relatively small population of parasites within the mosquito is subject to selection. After validating mosquito feeding strategies, we screened a range of parasiticidal compounds by feeding them to mosquitoes already infected with mouse malaria (P. berghei). Three antimalarials showed activity against P. berghei in mosquitoes, apparently targeting specific stages of P. berghei development during transmission. Borrelidin, a threonyl-tRNA synthetase inhibitor, significantly reduced P. berghei sporozoite numbers. Azithromycin, an antibiotic targeting apicoplast protein synthesis, significantly lowered sporozoite infectivity in mice. T111, a next generation compound targeting the parasite electron transport chain, reduced sporozoite numbers in P. berghei at equivalent concentrations to the gold standard electron transport chain inhibitor, atovaquone. T111 also prevented sporozoite production in mosquitoes infected with human malaria, P. falciparum, even after very short exposure times. Encouragingly, T111 remained efficacious after being freeze-dried onto a substrate and later reconstituted with water, suggesting this compound would be effective in easy-to-distribute-and-deploy transmission control devices. Our findings suggest that several antimalarials can be used to target mosquito-stage parasites via sugar baits and limit malaria transmission. Importantly, mosquito feeding of antimalarials could vastly increase the range of potentially useful parasiticidal compounds to include those failing to meet the exacting standards required for human antimalarial drugs, potentially improving malaria control for minimal cost.
期刊介绍:
International Journal for Parasitology offers authors the option to sponsor nonsubscriber access to their articles on Elsevier electronic publishing platforms. For more information please view our Sponsored Articles page. The International Journal for Parasitology publishes the results of original research in all aspects of basic and applied parasitology, including all the fields covered by its Specialist Editors, and ranging from parasites and host-parasite relationships of intrinsic biological interest to those of social and economic importance in human and veterinary medicine and agriculture.