{"title":"Ultrabright ratiometric Raman-guided epilepsy surgery by intraoperatively visualizing proinflammatory microglia.","authors":"Cong Wang, Zhi Li, Xiao Zhu, Wanbing Sun, Yue Ding, Wenjia Duan, Difei Wang, Yiqing Jiang, Ming Chen, Yuncan Chen, Jiayi Hu, Zheping Cai, Jing Zhao, Junfeng Wang, Zhen Fan, Faming Zheng, Xingyu Zhou, Fang Xie, Jianping Zhang, Yihui Guan, Kui Yan, Zuhai Lei, Qinyue Wang, Luting Wang, Xiao Xiao, Hairong Zheng, Liang Chen, Cong Li, Ying Mao","doi":"10.1016/j.xcrm.2025.102155","DOIUrl":null,"url":null,"abstract":"<p><p>Resective surgery is an effective approach for long-term seizure control in drug-resistant focal epilepsy when the epileptic focus (EF) can be accurately delineated and removed. However, intraoperative mapping of EF with electrocorticography is laborious, time-consuming, and highly vulnerable to the effects of anesthesia. Here, we demonstrated that activated microglia can be reliable biomarkers for EF localization. Leveraging a newly developed ratiometric Raman nanosensor, ultraHOCls, we successfully visualize proinflammatory microglia in live epileptic mice, allowing for precise EF delineation without the interference of anesthesia. Compared to electrocorticography-guided surgery, ultraHOCl-guided surgery results in a substantial 61% reduction in total seizure burden in epileptic mouse models. Notably, ultraHOCls sprayed on freshly excised human brain tissues can effectively discriminate epileptic regions from non-epileptic tissues with high sensitivity (94.89%) and specificity (93.3%). This work provides an alternative strategy for delineating the EF intraoperatively, potentially revolutionizing surgery outcomes in epilepsy patients.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102155"},"PeriodicalIF":11.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102155","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resective surgery is an effective approach for long-term seizure control in drug-resistant focal epilepsy when the epileptic focus (EF) can be accurately delineated and removed. However, intraoperative mapping of EF with electrocorticography is laborious, time-consuming, and highly vulnerable to the effects of anesthesia. Here, we demonstrated that activated microglia can be reliable biomarkers for EF localization. Leveraging a newly developed ratiometric Raman nanosensor, ultraHOCls, we successfully visualize proinflammatory microglia in live epileptic mice, allowing for precise EF delineation without the interference of anesthesia. Compared to electrocorticography-guided surgery, ultraHOCl-guided surgery results in a substantial 61% reduction in total seizure burden in epileptic mouse models. Notably, ultraHOCls sprayed on freshly excised human brain tissues can effectively discriminate epileptic regions from non-epileptic tissues with high sensitivity (94.89%) and specificity (93.3%). This work provides an alternative strategy for delineating the EF intraoperatively, potentially revolutionizing surgery outcomes in epilepsy patients.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.