{"title":"Cross-organ hierarchy of HLA molecular mismatches in donor-specific antibody development in solid organ transplantations.","authors":"Masaaki Hirata, Kazuto Tsukita, Takero Shindo, Shintaro Yagi, Takashi Ito, Satona Tanaka, Ryo Fujimoto, Hidenao Kayawake, Kenji Nakamura, Nobuhiro Fujiyama, Mitsuru Saito, Kimiko Yurugi, Rie Hishida, Arisa Kato, Atsushi Kawaguchi, Tomonori Habuchi, Takashi Kobayashi, Hiroshi Date, Etsuro Hatano","doi":"10.1016/j.xcrm.2025.102153","DOIUrl":null,"url":null,"abstract":"<p><p>Donor-specific antibodies (DSAs) against human leukocyte antigen (HLA) play a crucial role in antibody-mediated rejection, a major barrier to successful organ transplantation. Donor-recipient HLA molecular incompatibility critically influences DSA susceptibility, commonly assessed by analyzing mismatches in the HLA eplet repertoire. This study, including six distinct liver, lung, and kidney transplant cohorts from two centers (978 donor-recipient pairs), explores associations between individual eplet mismatches and DSA development. Certain mismatched eplets are strongly linked to DSA development, while others show weaker associations, a trend consistent across different organ types. Machine learning leverages these hierarchical associations to develop an eplet risk score (ERS), outperforming traditional eplet mismatch assessments. Furthermore, T cell proliferation in mixed lymphocyte reaction in vitro correlates with the ERS, attenuated by antibody-mediated inhibition of a mismatched DSA-associated eplet. These results establish the differential immunological impacts of mismatched HLA eplets as integral in clinical practice and therapeutic innovation.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102153"},"PeriodicalIF":11.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102153","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Donor-specific antibodies (DSAs) against human leukocyte antigen (HLA) play a crucial role in antibody-mediated rejection, a major barrier to successful organ transplantation. Donor-recipient HLA molecular incompatibility critically influences DSA susceptibility, commonly assessed by analyzing mismatches in the HLA eplet repertoire. This study, including six distinct liver, lung, and kidney transplant cohorts from two centers (978 donor-recipient pairs), explores associations between individual eplet mismatches and DSA development. Certain mismatched eplets are strongly linked to DSA development, while others show weaker associations, a trend consistent across different organ types. Machine learning leverages these hierarchical associations to develop an eplet risk score (ERS), outperforming traditional eplet mismatch assessments. Furthermore, T cell proliferation in mixed lymphocyte reaction in vitro correlates with the ERS, attenuated by antibody-mediated inhibition of a mismatched DSA-associated eplet. These results establish the differential immunological impacts of mismatched HLA eplets as integral in clinical practice and therapeutic innovation.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.