An A3C Learning Approach for Adaptive Service Function Chain Placement in Softwarized 5G Networks

IF 0.5 Q4 TELECOMMUNICATIONS
Anjali Rajak, Rakesh Tripathi
{"title":"An A3C Learning Approach for Adaptive Service Function Chain Placement in Softwarized 5G Networks","authors":"Anjali Rajak,&nbsp;Rakesh Tripathi","doi":"10.1002/itl2.70021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Network functions virtualization transforms traditional network functions into software, enabling them to run as virtual network function (VNF) instances on cloud infrastructure. In softwarized 5G networks, communication services are provided through service function chains (SFCs), which sequentially link multiple VNFs according to specific requirements. This approach enhances network management and orchestration, offering greater flexibility and scalability. However, improving resource consumption and quality of service while adhering to physical network constraints remains a significant challenge. This study introduces an A3C-GLA framework for adaptive service function chain placement (that leverages the Asynchronous Advantage Actor Critic (A3C) algorithm, Graph Attention Networks (GATs), and Sequence-to-Sequence Long Short-Term Memory with Attention mechanism (Seq2SeqLSTM-A). Extensive simulations demonstrate that the proposed framework significantly outperforms existing benchmark schemes in terms of long-term average revenue and acceptance ratio, offering a more efficient and effective solution for SFC placement in softwarized 5G networks.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Network functions virtualization transforms traditional network functions into software, enabling them to run as virtual network function (VNF) instances on cloud infrastructure. In softwarized 5G networks, communication services are provided through service function chains (SFCs), which sequentially link multiple VNFs according to specific requirements. This approach enhances network management and orchestration, offering greater flexibility and scalability. However, improving resource consumption and quality of service while adhering to physical network constraints remains a significant challenge. This study introduces an A3C-GLA framework for adaptive service function chain placement (that leverages the Asynchronous Advantage Actor Critic (A3C) algorithm, Graph Attention Networks (GATs), and Sequence-to-Sequence Long Short-Term Memory with Attention mechanism (Seq2SeqLSTM-A). Extensive simulations demonstrate that the proposed framework significantly outperforms existing benchmark schemes in terms of long-term average revenue and acceptance ratio, offering a more efficient and effective solution for SFC placement in softwarized 5G networks.

软件化5G网络自适应业务功能链布局的A3C学习方法
网络功能虚拟化将传统网络功能转化为软件,以VNF (virtual Network function)实例的形式在云基础设施上运行。在软件化的5G网络中,通信业务通过业务功能链(sfc)提供,sfc根据具体需求依次连接多个VNFs。这种方法增强了网络管理和编排,提供了更大的灵活性和可伸缩性。然而,在遵守物理网络约束的同时提高资源消耗和服务质量仍然是一个重大挑战。本研究引入了一种用于自适应服务功能链布局的A3C- gla框架(该框架利用了异步优势行动者批评家(A3C)算法、图注意网络(GATs)和具有注意机制的序列对序列长短期记忆(Seq2SeqLSTM-A)。大量的仿真表明,所提出的框架在长期平均收入和接受率方面显著优于现有的基准方案,为软件5G网络中的SFC放置提供了更高效和有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信